Skip to main content
Log in

Bond graph and memristor approach to DNA analysis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a mechanism for describing DNA information in a global perspective based on the bond graph and the memristor concepts. Present-day schemes rely upon local techniques for comparing distinct portions of DNA and, consequently, they are limited in the scope of their applicability. Systematic modeling procedures may shed an additional light toward efficient encoding algorithms, for the analysis and design of natural and artificial DNA structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bates, A.D., Maxwell, A.: DNA Topology, 2nd edn. Oxford University Press, Oxford (2005)

    Google Scholar 

  2. Borutzky, W.: Bond Graph Methodology: Development and Analysis of Multidisciplinary Dynamic System Models. Springer, London (2010)

    Book  Google Scholar 

  3. Breedveld, P.C.: Thermodynamic bond graphs and the problem of thermal lnertance. J. Frankl. Inst. 314(1), 15–40 (1982)

    Article  MathSciNet  Google Scholar 

  4. Brewer, J.W.: Bond graphs of microeconomic systems. In: 75-WA/Aut-8. American Society of Mechanical Engineering, Houston, USA (1975)

  5. Brewer, J.W.: Structure and cause and effect relations in social systems simulations. IEEE Trans. Syst. Man Cybern. 7(6), 468–474 (1977)

    Article  Google Scholar 

  6. Brewer, J.W.: Progress in the bond graph representations of economics and population dynamics. J. Frankl. Inst. 328(5/6), 675–696 (1991)

    Article  MATH  Google Scholar 

  7. Brewer, J.W., Craig, P.P.: Bilinear, dynamic single-ports and bond graphs of economic systems. J. Frankl. Inst. 313(4), 185–196 (1982)

    Article  MATH  Google Scholar 

  8. Carey, N.: Junk DNA: A Journey Through the Dark Matter of the Genome. Columbia University Press, New York (2015)

    Book  Google Scholar 

  9. Chua, L.: Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102(4), 765–783 (2011). doi:10.1007/s00339-011-6264-9

    Article  MATH  Google Scholar 

  10. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(2), 507–519 (1971). doi:10.1109/TCT.1971.1083337

    Article  MathSciNet  Google Scholar 

  11. Chua, L.O., Kang, S.M.: Device modeling via basic nonlinear circuits elements. IEEE Trans. Circuits Syst. 27(11), 1014–1044 (1980). doi:10.1109/TCS.1980.1084742

    Article  MathSciNet  MATH  Google Scholar 

  12. David, F.G.: DNA Science: A First Course, 2nd edn. Cold Spring Harbor Laboratory Press, New York (2003)

    Google Scholar 

  13. Deskur, J.: Models of magnetic circuits and their equivalent electrical diagrams. Int. J. Comput. Math. Electr. Electron. Eng. 18(4), 600–610 (1999). doi:10.1108/03321649910296636

    Article  MATH  Google Scholar 

  14. Gawthrop, P.J., Bevan, G.P.: Bond-graph modeling: a tutorial introduction for control engineers. IEEE Control Syst. Mag. 27(2), 24–45 (2007). doi:10.1109/MCS.2007.338279

    Article  MathSciNet  Google Scholar 

  15. Gawthrop, P.J., Smith, L.S.: Metamodelling: Bond Graphs and Dynamic Systems. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  16. Georgiadis, M.M., Singh, I., Kellett, W.F., Hoshika, S., Benner, S.A., Richards, N.G.: Structural basis for a six nucleotide genetic alphabet. J. Am. Chem. Soc. 137(21), 6947–6955 (2015). doi:10.1021/jacs.5b03482

    Article  Google Scholar 

  17. Jeltsema, D., Dòria-Cerezo, A.: Port-Hamiltonian formulation of systems with memory. Proc. IEEE 100(6), 1928–1937 (2012). doi:10.1109/JPROC.2011.2164169

    Article  Google Scholar 

  18. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010). doi:10.1021/nl904092h

    Article  Google Scholar 

  19. Karnopp, D., Rosenberg, R.C.: System Dynamics: A Unified Approach. Wiley, New York (1975)

    Google Scholar 

  20. Ma, C., Hori, Y.: Application of bond graph models to the representation of buildings and their use. In: Proceedings of American Control Conference, pp. 2901–2906. Boston, Massachusetts, USA (2004)

  21. Machado, J.A.T.: Fractional generalization of memristor and higher order elements. Commun. Nonlinear Sci. Numer. Simul. 18(12), 264–275 (2013). doi:10.1016/j.cnsns.2012.07.014

    Article  MathSciNet  MATH  Google Scholar 

  22. Machado, J.A.T., Mata, M.E.: A fractional perspective to the bond graph modelling of world economies. Nonlinear Dyn. 80(4), 1839–1852 (2015). doi:10.1007/s11071-014-1334-0

    Article  MathSciNet  Google Scholar 

  23. Machado, J.T.: Fractional order description of DNA. Appl. Math. Model. 39(14), 4095–4102 (2015). doi:10.1016/j.apm.2014.12.037

    Article  Google Scholar 

  24. Machado, J.T., Costa, A.C., Quelhas, M.D.: Fractional dynamics in DNA. Commun. Nonlinear Sci. Numer. Simul. 16(8), 2963–2969 (2011). doi:10.1016/j.cnsns.2010.11.007

    Article  MATH  Google Scholar 

  25. Merzouki, R., Pathak, A.K.S.P.M., Bouamama, B.O.: Intelligent Mechatronic Systems: Modeling, Control and Diagnosis. Springer, London (2013)

    Book  Google Scholar 

  26. Mukherjee, A., Karmakar, R., Samantaray, A.K.: Bond Graph in Modeling, Simulation and Fault Identification. CRC Press, New Delhi (2006)

    Google Scholar 

  27. Nielsen, A.A.K., Der, B.S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E.A., Ross, D., Densmore, D., Voigt, C.A.: Genetic circuit design automation. Science (2016). doi:10.1126/science.aac7341

    Google Scholar 

  28. Oster, G.F., Auslander, D.M.: The memristor: a new bond graph element. Trans. ASME Dyn. Syst. Meas. Control 94(3), 249–252 (1972). doi:10.1115/1.3426595

    Article  Google Scholar 

  29. Paynter, H.: An Epistemic Prehistory of Bond Graphs. North-Holland, Amsterdam (1992)

    Google Scholar 

  30. Perez, J.C.: Deciphering hidden DNA meta-codes–the great unification and master code of biology. J. Glycom. Lipidom. 5(2), 1–20 (2015). doi:10.4172/2153-0637.1000131

    Article  Google Scholar 

  31. Stergachis, A.B., Haugen, E., Shafer, A., Fu, W., Vernot, B., Reynolds, A., Raubitschek, A., Ziegler, S., LeProust, E.M., Akey, J.M., Stamatoyannopoulos, J.A.: Exonic transcription factor binding directs codon choice and affects protein evolution. Science 342(6164), 1367–1372 (2013). doi:10.1126/science.1243490

  32. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 97, 80–83 (2008). doi:10.1038/nature06932

    Article  Google Scholar 

  33. Thoma, J., Bouamama, B.O.: Modelling and Simulation in Thermal and Chemical Engineering: A Bond Graph Approach. Springer, Berlin (2010)

    Google Scholar 

  34. Thoma, J.U.: Introduction to Bond Graphs and Their Applications. Pergamon Press, Oxford (1975)

    Google Scholar 

  35. Tsai, J.J.H., Gero, J.S.: Unified Energy-Based Qualitative Representation for Building Analysis. VDM Verlag, Saarbrucken (2009)

    Google Scholar 

  36. Tsai, J.J.H., Gero, J.S.: A qualitative energy-based unified representation for buildings. Autom. Constr. 19(1), 20–42 (2010)

    Article  Google Scholar 

  37. Ventra, M.D., Pershin, Y.V., Chua, L.O.: Circuits elements with memory: memristors, memcapacitors and meminductors. Proc. IEEE 97(10), 1717–1724 (2009). doi:10.1109/JPROC.2009.2027660

    Article  Google Scholar 

  38. Watson, J.D.: The Double Helix: A Personal Account of the Discovery of the Structure of DNA. Touchstone, First Touchstone Edition (2001)

  39. Weatheritt, R.J., Babu, M.M.: The hidden codes that shape protein evolution. Science 342, 1325–1326 (2016). doi:10.1126/science.1248425

    Article  Google Scholar 

  40. Wellstead, P.E.: Introduction to Physical System Modelling. Academic Press, London (1979)

    Google Scholar 

  41. Williams, R.S.: How we found the missing memristor. IEEE Spectr. 45(12), 28–35 (2008). doi:10.1109/MSPEC.2008.4687366

    Article  Google Scholar 

  42. Wong, Y.K.: Application of bond graph models to economics. Int. J. Model. Simul. 21(3), 181–190 (2001). doi:10.1080/02286203.2001.11442201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tenreiro Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, J.T. Bond graph and memristor approach to DNA analysis. Nonlinear Dyn 88, 1051–1057 (2017). https://doi.org/10.1007/s11071-016-3294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3294-z

Keywords

Navigation