Skip to main content

Advertisement

Log in

Nonlinear equivalent model and its identification for a delayed absorber with magnetic action using distorted measurement

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

For an absorber with the magnetic action and the delayed feedback, the equivalent strongly nonlinear model of the magnet force is proposed. We develop an identification algorithm with correcting distorted output measurement to identify and estimate the relevant parameters of the equivalently nonlinear model and the time delay in the feedback loop. The detailed steps of the algorithm are given analytically. We configure an experimental device of a delayed electromechanical absorber with action of the nonlinear magnetic force. The new algorithm is employed to identify the relative parameters of the device, such as time delay, damping and nonlinear stiffness, based on data of the output measurement with distortion. The results show that it is reasonable that the magnet action may be equivalent to the cubic nonlinear force. One may also see that the new algorithm may treat the experimental distorting measurement and correct it as long as the measurement still keeps periodicity. As an important result, values of the identified parameters with the correcting distortion are closer to those of the original measurement than those without the no correcting distortion for some excitation frequencies. It means that the algorithm may correct the polluted measurement, so that the quality of the identification is greatly improved. The new algorithm may be useful for design of nonlinear electromechanical absorber with time-delayed feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sun, Y., Xu, J.: Experiments and analysis for a controlled mechanical absorber considering delay effect. J. Sound Vib. 339, 25–37 (2015)

    Article  Google Scholar 

  2. Xu, J., Sun, Y.: Experimental studies on active control of a dynamic system via a time-delayed absorber. Acta Mech. Sin. 31(2), 229–247 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhao, Y.Y., Xu, J.: Effects of delayed feedback control on nonlinear vibration absorber system. J. Sound Vib. 308(1), 212–230 (2007)

    Article  Google Scholar 

  4. Zhao, Y.Y., Xu, J.: Using the delayed feedback control and saturation control to suppress the vibration of the dynamical system. Nonlinear Dyn. 67(1), 735–753 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jo, H., Yabuno, H.: Amplitude reduction of primary resonance of nonlinear oscillator by a dynamic vibration absorber using nonlinear coupling. Nonlinear Dyn. 55(1–2), 67–78 (2009)

    Article  MATH  Google Scholar 

  7. Benacchio, S., Malher, A., Boisson, J., Touzé, C.: Design of a magnetic vibration absorber with tunable stiffnesses. Nonlinear Dyn. 85(2), 893–911 (2016)

    Article  MathSciNet  Google Scholar 

  8. Insperger, T., Lehotzky, D., Stepan, G.: Regenerative delay, parametric forcing and machine tool chatter: a review. In: IFAC-Papers Online, vol. 48, no. 12, pp. 322–327 (2015)

  9. Hajdu, D., Insperger, T., Stepan, G.: Robust stability analysis of machining operations. Int. J. Adv. Manuf. Technol. 1–10 (2016). doi:10.1007/s00170-016-8715-0

  10. Verduyn Lunel, S.M.: Parameter identifiability of differential delay equations. Int. J. Adapt. Control 15(6), 655–678 (2001)

    Article  MATH  Google Scholar 

  11. Belkoura, L., Orlov, Y.: Identifiability analysis of linear delay-differential systems. IMA J. Math. Control I 19(1 and 2), 73–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Orlov, Y., Belkoura, L., Richard, J.P., Dambrine, M.: On identifiability of linear time-delay systems. IEEE T. Autom. Control 47(8), 1319–1324 (2002)

    Article  MathSciNet  Google Scholar 

  13. Gomez, O., Orlov, Y., Kolmanovsky, I.V.: On-line identification of SISO linear time-invariant delay systems from output measurements. Automatica 43(12), 2060–2069 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Orlov, Y., Kolmanovsky, I.V., Gomez, O.: Adaptive identification of linear time-delay systems: from theory toward application to engine transient fuel identification. Int. J. Adapt. Control 23(2), 150–165 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Björklund, S., Ljung, L.: An improved phase method for time-delay estimation. Automatica 45(10), 2467–2470 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, T., Gao, F.: A frequency domain step response identification method for continuous-time processes with time delay. J. Process Control 20(7), 800–809 (2010)

    Article  Google Scholar 

  17. Zhang, X., Xu, J.: Time delay identifiability and estimation for the delayed linear system with incomplete measurement. J. Sound Vib. 361, 330–340 (2016)

  18. Xia, X., Moog, C.H.: Identifiability of nonlinear systems with application to HIV/AIDS models. IEEE Trans. Autom. Control 48(2), 330–336 (2003)

    Article  MathSciNet  Google Scholar 

  19. Zhang, J., Xia, X., Moog, C.H.: Parameter identifiability of nonlinear systems with time-delay. IEEE Trans. Autom. Control 51(2), 371–375 (2006)

    Article  MathSciNet  Google Scholar 

  20. Anguelova, M., Wennberg, B.: State elimination and identifiability of the delay parameter for nonlinear time-delay systems. Automatica 44(5), 1373–1378 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Loxton, R., Teo, K.L., Rehbock, V.: An optimization approach to state-delay identification. IEEE Trans. Autom. Control 55(9), 2113–2119 (2010)

    Article  MathSciNet  Google Scholar 

  22. Chai, Q., Loxton, R., Teo, K.L., Yang, C.: A unified parameter identification method for nonlinear time-delay systems. J. Ind. Manag. Optim. 9(2), 471–486 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, Q., Loxton, R., Xu, C., Teo, K.L.: Parameter estimation for nonlinear time-delay systems with noisy output measurements. Automatica 60, 48–56 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yan, X.G., Spurgeon, S.K., Edwards, C.: State and parameter estimation for nonlinear delay systems using sliding mode techniques. IEEE Trans. Autom. Control 58(4), 1023–1029 (2013)

  25. Ren, X.M., Rad, A.B.: Identification of nonlinear systems with unknown time delay based on time-delay neural networks. IEEE Trans. Neural Netw. 18(5), 1536–1541 (2007)

    Article  Google Scholar 

  26. Wen, Y., Ren, X.: Neural observer-based adaptive compensation control for nonlinear time-varying delays systems with input constraints. Expert Syst. Appl. 39(2), 1944–1955 (2012)

    Article  Google Scholar 

  27. Zhang, X.X., Xu, J.: Identification of time delay in nonlinear systems with delayed feedback control. J. Frankl. Inst. 352(8), 2987–2998 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grant No. 11572224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Appendix

Appendix

The closed form of \(\mathbf{H}_\mu ^{{\omega } _s } , \mathbf{H}_1^{{\omega } _s } \), and \(\mathbf{H}_2^{{\omega } _s } \) in Eq. (15) are given by

$$\begin{aligned}&{} \mathbf{H}_\mu ^{{\omega } _s } =\left( {{\begin{array}{l} {\mathbf{H}_{\mu ,1}^{{\omega } _s } }\quad {\mathbf{H}_{\mu ,2}^{{\omega } _s } }\quad {\mathbf{H}_{\mu ,3}^{{\omega } _s } }\quad {\mathbf{H}_{\mu ,4}^{{\omega } _s } }\quad {\mathbf{H}_{\mu ,5}^{{\omega } _s } }\quad {\mathbf{H}_{\mu ,6}^{{\omega } _s } }\quad {\mathbf{H}_{\mu ,7}^{{\omega } _s } }\quad {\mathbf{H}_{\mu ,8}^{{\omega } _s } } \\ \end{array} }} \right) \in {\mathbb {R}}^{4p\times 8},\nonumber \\ \end{aligned}$$
(26)

where

and \(\Phi _{2,i}^{{\omega } _s } \) is the element at row i in vector \({\varvec{\Phi }}_2^{{\omega } _s } \).

(27)

where

$$\begin{aligned} {\tilde{\mathbf{H}}}_1^{{\omega } _s } =\left( {{\begin{array}{cccc} {{\tilde{\mathbf{H}}}_{1,1,1}^{{\omega } _s } }&{} &{} &{} \\ &{} {{\tilde{\mathbf{H}}}_{1,2,2}^{{\omega } _s } }&{} &{} \\ &{} &{} \ddots &{} \\ &{} &{} &{} {{\tilde{\mathbf{H}}}_{1,p,p}^{{\omega } _s } } \\ \end{array} }} \right) {,} \end{aligned}$$

and

$$\begin{aligned} {\tilde{\mathbf{H}}}_{1,j,j}^{{\omega } _s } =\left( {{\begin{array}{cccc} {-j^{2}{\omega } _s^2 m_1 +\left( {{\tilde{k}}_1 +{\tilde{k}}_2 } \right) }&{} {-j{\omega } _s \left( {{{\tilde{c}}}_1 +{{\tilde{c}}}_2 } \right) } \\ {{\tilde{k}}_2 }&{} {j{\omega } _s {{\tilde{c}}}_2 } \\ {j{\omega } _s \left( {{{\tilde{c}}}_1 +{{\tilde{c}}}_2 } \right) }&{} {-j^{2}{\omega } _s^2 m_1 +\left( {{\tilde{k}}_1 +{\tilde{k}}_2 } \right) } \\ {-j{\omega } _s {{\tilde{c}}}_2 }&{} {{\tilde{k}}_2 } \\ \end{array} }} \right) {.} \end{aligned}$$
(28)

where

$$\begin{aligned} \mathbf{H}_{2,\Psi }^{{\omega } _s }= & {} \left( {{\begin{array}{llll} 0&{} 0&{} \cdots &{} 0 \\ {\Psi _{2,1,1}^{{\omega } _s } }&{} {\Psi _{2,1,2}^{{\omega } _s } }&{} \cdots &{} {\Psi _{2,1,2\left( {p-1} \right) }^{{\omega } _s } } \\ 0&{} 0&{} \cdots &{} 0 \\ {\Psi _{2,2,1}^{{\omega } _s } }&{} {\Psi _{2,2,2}^{{\omega } _s } }&{} \cdots &{} {\Psi _{2,2,2\left( {p-1} \right) }^{{\omega } _s } } \\ \vdots &{} \vdots &{} &{} \vdots \\ 0&{} 0&{} \cdots &{} 0 \\ {\Psi _{2,2p-1,1}^{{\omega } _s } }&{} {\Psi _{2,2p-1,2}^{{\omega } _s } }&{} \cdots &{} {\Psi _{2,2p-1,2\left( {p-1} \right) }^{{\omega } _s } } \\ 0&{} 0&{} \cdots &{} 0 \\ {\Psi _{2,2p,1}^{{\omega } _s } }&{} {\Psi _{2,2p,2}^{{\omega } _s } }&{} \cdots &{} {\Psi _{2,2p,2\left( {p-1} \right) }^{{\omega } _s } } \\ \end{array} }} \right) , \\ {\tilde{\mathbf{H}}}_2^{{\omega } _s }= & {} \left( {{\begin{array}{llll} {{\tilde{\mathbf{H}}}_{2,1,1}^{{\omega } _s } }&{} &{} &{} \\ &{} {{\tilde{\mathbf{H}}}_{2,2,2}^{{\omega } _s } }&{} &{} \\ &{} &{} \ddots &{} \\ &{} &{} &{} {{\tilde{\mathbf{H}}}_{2,p,p}^{{\omega } _s } } \\ \end{array} }} \right) {,} \end{aligned}$$
$$\begin{aligned} {\tilde{\mathbf{H}}}_{2,j,j}^{{\omega } _s }= & {} \left( {{\begin{array}{ll} {{\tilde{k}}_2 -{\tilde{k}}_d \cos j{\omega } _s \tau }&{} \quad {i{\omega } _s {{\tilde{c}}}_2 -{\tilde{k}}_d \sin j{\omega } _s \tau } \\ {-j^{2}{\omega } _s^2 m_2 +{\tilde{k}}_2 }&{} \quad {-j{\omega } _s {{\tilde{c}}}_2 } \\ {-j{\omega } _s {\tilde{c}}_2 +{\tilde{k}}_d \sin j{\omega } _s \tau }&{}\quad {{\tilde{k}}_2 -{\tilde{k}}_d \cos j{\omega } _s \tau } \\ {j{\omega } _s {\tilde{c}}_2 }&{}\quad {-j^{2}{\omega } _s^2 m_2 +{\tilde{k}}_2 } \\ \end{array} }} \right) {,} \end{aligned}$$

and \(\Psi _{2,i,j}^{{\omega } _s } \) is the element at row i and column j in matrix \({\varvec{\Psi }}_2^{{\omega } _s } \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xu, J. & Feng, Z. Nonlinear equivalent model and its identification for a delayed absorber with magnetic action using distorted measurement. Nonlinear Dyn 88, 937–954 (2017). https://doi.org/10.1007/s11071-016-3286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3286-z

Keywords

Navigation