Skip to main content
Log in

On the formation of hidden chaotic attractors and nested invariant tori in the Sprott A system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider the well-known Sprott A system, which depends on a single real parameter a and, for \(a=1\), was shown to present a hidden chaotic attractor. We study the formation of hidden chaotic attractors as well as the formation of nested invariant tori in this system, performing a bifurcation analysis by varying the parameter a. We prove that, for \(a=0\), the Sprott A system has a line of equilibria in the z-axis, the phase space is foliated by concentric invariant spheres with two equilibrium points located at the south and north poles, and each one of these spheres is filled by heteroclinic orbits of south pole–north pole type. For \(a\ne 0\), the spheres are no longer invariant algebraic surfaces and the heteroclinic orbits are destroyed. We do a detailed numerical study for \(a>0\) small, showing that small nested invariant tori and a limit set, which encompasses these tori and is the \(\alpha \)- and \(\omega \)-limit set of almost all orbits in the phase space, are formed in a neighborhood of the origin. As the parameter a increases, this limit set evolves into a hidden chaotic attractor, which coexists with the nested invariant tori. In particular, we find hidden chaotic attractors for \(a<1\). Furthermore, we make a global analysis of Sprott A system, including the dynamics at infinity via the Poincaré compactification, showing that for \(a>0\), the only orbit which escapes to infinity is the one contained in the z-axis and all other orbits are either homoclinic to a limit set (or to a hidden chaotic attractor, depending on the value of a), or contained on an invariant torus, depending on the initial condition considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat. Chaos 9, 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cima, A., Llibre, J.: Bounded polynomial vector fields. Trans. Am. Math. Soc. 318, 557–579 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Danca, M.F.: Hidden transient chaotic attractors of Rabinovich-Fabrikant system. Nonlinear Dyn. 86, 1263–1270 (2016)

    Article  MathSciNet  Google Scholar 

  4. Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)

    Article  MathSciNet  Google Scholar 

  5. Gotthans, T., Petržela, J.: New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 73, 429–436 (2015)

    MathSciNet  Google Scholar 

  6. Hoover, W.G.: Remark on ‘Some simple chaotic flows’. Phys. Rev. E 51, 759–760 (1995)

    Article  Google Scholar 

  7. Jafari, S., Sprott, J.C.: Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57, 79–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 377, 699–702 (2013)

    Article  MathSciNet  Google Scholar 

  9. Jafari, S., Sprott, J.C., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phys. J. Special Top. 224, 1469–1476 (2015)

    Article  Google Scholar 

  10. Kingni, S.T., Jafari, S., Simo, H., Woafo, P.: Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. Eur. Phys. J. Plus 129, 76 (2014)

    Article  Google Scholar 

  11. Lao, S.K., Shekofteh, Y., Jafari, S., Sprott, J.C.: Cost function based on Gaussian mixture model for parameter estimation of a chaotic circuit with a hidden attractor. Int. J. Bifurcat. Chaos 24, 1450010 (11 pages) (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems: from hidden oscillations in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurcat. Chaos 23, 1330002 (69 pages) (2013)

    MathSciNet  MATH  Google Scholar 

  13. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Special Top. 224, 1421–1458 (2015)

    Article  Google Scholar 

  14. Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurcat. Chaos 24, 1450034 (12 pages) (2014)

    MathSciNet  MATH  Google Scholar 

  15. Llibre, J., Messias, M.: Global dynamics of the Rikitake system. Phys. D 238, 241–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Llibre, J., Messias, M., da Silva, P.R.: Global dynamics in the Poincaré ball of the Chen system having invariant algebraic surfaces. Int. J. Bifurcat. Chaos 22, 1250154 (17 pages) (2012)

  17. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  18. Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurcat. Chaos 12, 659–661 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Messias, M.: Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system. J. Phys. A Math. Theor. 42, 115101 (18 pages) (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Molaie, M., Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Simple chaotic flows with one stable equilibrium. Int. J. Bifurcat. Chaos 23, 1350188 (7 pages) (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pham, V.T., Jafari, S., Vaidyanathan, S., Volos, C., Wang, X.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Tech. Sci. 59, 1–6 (2016)

    Article  Google Scholar 

  22. Pham, V.T., Volos, C., Jafari, S., Vaidyanathan, S., Kapitaniak, T., Wang, X.: A chaotic system with different families of hidden attractors. Int. J. Bifurcat. Chaos 8, 1650139 (9 pages) (2016)

    MATH  Google Scholar 

  23. Posch, H.A., Hoover, W.G., Vesely, F.J.: Canonical dynamics of the Nosé oscillator: stability, order, and chaos. Phys. Rev. A 33, 4253–4265 (1986)

    Article  MathSciNet  Google Scholar 

  24. Rössler, O.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976)

    Article  Google Scholar 

  25. Sandri, M.: Numerical calculation of Lyapunov exponents. Math. J. 6, 79–84 (1996)

    Google Scholar 

  26. Shahzad, M., Pham, V.T., Ahmad, M.A., Jafari, S., Hadaeghi, F.: Synchronization and circuit design of a chaotic system with coexisting hidden attractors. Eur. Phys. J. Special Top. 224, 1637–1652 (2015)

    Article  Google Scholar 

  27. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer, New York (1982)

    Book  MATH  Google Scholar 

  28. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50, R647–R650 (1994)

    Article  MathSciNet  Google Scholar 

  29. Wang, Z., Cang, S., Ochola, E.O., Sun, Y.: A hyperchaotic system without equilibrium. Nonlinear Dyn. 69, 531–537 (2012)

    Article  MathSciNet  Google Scholar 

  30. Wang, X., Chen, G.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17, 1264–1272 (2012)

    Article  MathSciNet  Google Scholar 

  31. Wei, Z., Pehlivan, I.: Chaos, coexisting attractors, and circuit design of the generalized Sprott C system with only two stable equilibria. Optoelectron. Adv. Mater. Rapid Commun. 6, 742–745 (2012)

    Google Scholar 

  32. Wei, Z., Yang, Q.: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal. Real World Appl. 12, 106–118 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wei, Z., Zhang, W.: Hidden hyperchaotic attractors in a modified Lorenz-Stenflo system with only one stable equilibrium. Int. J. Bifurcat. Chaos 24, 1450127 (14 pages) (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wei, Z., Zhang, W., Wang, Z., Yao, M.: Hidden attractors and dynamical behaviors in an extended Rikitake system. Int. J. Bifurcat. Chaos 25, 1550028 (11 pages) (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is supported by FAPESP Process number 2013/24541-0, by CNPq Grant Number 308315/2012-0 and by CAPES Grant Number 88881.030454/2013 from the program CSF–PVE . The second author is supported by FAPESP Process Number 2013/26602-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Messias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messias, M., Reinol, A.C. On the formation of hidden chaotic attractors and nested invariant tori in the Sprott A system. Nonlinear Dyn 88, 807–821 (2017). https://doi.org/10.1007/s11071-016-3277-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3277-0

Keywords

Navigation