Skip to main content
Log in

Linear and nonlinear stability analysis of an extended car-following model considering pedestrians on adjacent lane

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents an extended car-following model, which can be used to describe the dynamic characteristics of mixed traffic with pedestrians walking on adjacent lane. The proposed model is based on the optimal velocity function by taking into account two additional stimuli generated by adjacent pedestrians, i.e., the lateral and longitudinal headways between the observed car and the preceding pedestrian. By using the linear stability theory, this paper first derives the stability condition and plots the neutral stability curves with the model-related parameters. Then through the reductive perturbation method, we obtain the soliton solution of the modified Korteweg–de Vries equation near the critical point and depict the coexisting curve which divides the traffic flow state into three types (i.e., stable, metastable and unstable state) along with the corresponding neutral stability curve. Numerical results demonstrate that the proposed model can effectively characterize traffic following behaviors under the mixed-pedestrian–vehicle situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Prigogine, I., Herman, R.C.: Kinetic Theory of Vehicular Traffic. Elsevier Press, New York (1971)

    MATH  Google Scholar 

  2. Nagatani, T.: Jamming transition of high-dimensional traffic dynamics. Phys. A 272(3), 592–611 (1999)

    Article  MathSciNet  Google Scholar 

  3. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62(2), 1805–1824 (2000)

    Article  MATH  Google Scholar 

  4. Nagatani, T.: The physics of traffic jams. Rep. Prog. Phys. 65(9), 1331–1386 (2002)

    Article  Google Scholar 

  5. Treiber, M., Kesting, A., Helbing, D.: Delays, inaccuracies and anticipation in microscopic traffic models. Phys. A 360(1), 71–88 (2006)

    Article  Google Scholar 

  6. Ngoduy, D.: Analytical studies on the instabilities of heterogeneous intelligent traffic flow. Commun. Nonlinear Sci. Numer. Simul. 18(10), 2699–2706 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ngoduy, D.: Generalized macroscopic traffic model with time delay. Nonlinear Dyn. 77(1), 289–296 (2014)

    Article  MathSciNet  Google Scholar 

  8. Yu, S.W., Zhao, X.M., Xu, Z.G., Shi, Z.K.: An improved car-following model considering the immediately ahead cars velocity difference. Phys. A 461, 446–455 (2016)

    Article  Google Scholar 

  9. Whitham, G.B.: The effects of hydraulic resistance in the dam-break problem. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 227, 399–407 (1955)

  10. Ngoduy, D., Wilson, R.E.: Multianticipative nonlocal macroscopic traffic model. Comp.-Aided Civ. Infrastruct. Eng. 29(4), 248–263 (2014)

    Article  Google Scholar 

  11. Helbing, D.: A section-based queueing-theoretical traffic model for congestion and travel time analysis in networks. J. Phys. A: Math. Gen. 36(46), 593–598 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carlson, R.C., Papamichail, I., Papageorgiou, M., Messmer, A.: Optimal mainstream traffic flow control of large-scale motorway networks. Transp. Res. Part C: Emerg. Technol. 18(2), 193–212 (2010)

    Article  Google Scholar 

  13. Gazis, D.C., Herman, R., Potts, R.B.: Car-following theory of steady-state traffic flow. Oper. Res. 7(4), 499–505 (1959)

    Article  MathSciNet  Google Scholar 

  14. Tang, T.Q., Shi, W.F., Shang, H.Y., Wang, Y.P.: A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn. 76(4), 2017–2023 (2014)

    Article  Google Scholar 

  15. Peng, G.H., Sun, D.H.: A dynamical model of car-following with the consideration of the multiple information of preceding cars. Phys. Lett. A 374(15), 1694–1698 (2010)

    Article  MATH  Google Scholar 

  16. Jiang, R., Wu, Q.S., Zhu, Z.J.: A new continuum model for traffic flow and numerical tests. Transp. Res. Part B: Methodol. 36(5), 405–419 (2002)

    Article  Google Scholar 

  17. Zhou, J., Shi, Z.K., Cao, J.L.: Nonlinear analysis of the optimal velocity difference model with reaction-time delay. Phys. A 396, 77–87 (2014)

    Article  MathSciNet  Google Scholar 

  18. Yu, S.W., Liu, Q.L., Li, X.H.: Full velocity difference and acceleration model for a car-following theory. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1229–1234 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou, J., Shi, Z.K., Cao, J.L.: An extended traffic flow model on a gradient highway with the consideration of the relative velocity. Nonlinear Dyn. 78(3), 1765–1779 (2014)

    Article  Google Scholar 

  20. Tang, T.Q., Shi, W.F., Shang, H.Y., Wang, Y.P.: An extended car-following model with consideration of the reliability of inter-vehicle communication. Measurement 58, 286–293 (2014)

    Article  Google Scholar 

  21. Schadschneider, A., Schreckenberg, M.: Cellular automation models and traffic flow. J. Phys. A: Math. Gen. 26(15), 679–683 (1998)

    Article  Google Scholar 

  22. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2(12), 2221–2229 (1992)

    Google Scholar 

  23. Duff, T.J., Chong, D.M., Tolhurst, K.G.: Using discrete event simulation cellular automata models to determine multi-mode travel times and routes of terrestrial suppression resources to wildland fires. Eur. J. Oper. Res. 241(3), 763–770 (2015)

    Article  Google Scholar 

  24. Hsu, J.J., Chu, J.C.: Long-term congestion anticipation and aversion in pedestrian simulation using floor field cellular automata. Transp. Res. Part C: Emerg. Technol. 48, 195–211 (2014)

    Article  Google Scholar 

  25. Bando, M., Hasebe, K., Nakanishi, K., Nakayama, A.: Analysis of optimal velocity model with explicit delay. Phys. Rev. E 58(5), 5429–5450 (1998)

    Article  Google Scholar 

  26. Ge, H.X., Dai, S.Q., Dong, L.Y., Xue, Y.: Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application. Phys. Rev. E 70(6), 1–6 (2004)

    Article  Google Scholar 

  27. Masakuni, M., Nagatani, T.: Soliton and kink jams in traffic flow with open boundaries. Phys. Rev. E 60(1), 180–187 (1999)

    Article  Google Scholar 

  28. Reuschel, A.: Vehicle movements in a platoon with uniform acceleration or deceleration of the lead vehicle. Zeitschrift des Oesterreichischen Ingenieur-und Architekten-Vereines 95, 50–62 (1950)

    Google Scholar 

  29. Pipes, L.A.: An operational analysis of traffic dynamics. J. Appl. Phys. 24(3), 274–281 (1953)

    Article  MathSciNet  Google Scholar 

  30. Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Oper. Res. 6(2), 165–184 (1958)

    Article  MathSciNet  Google Scholar 

  31. Newell, G.F.: Nonlinear effects in the dynamics of car following. Oper. Res. 9(2), 209–229 (1961)

    Article  MATH  Google Scholar 

  32. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035–1045 (1995)

    Article  Google Scholar 

  33. Nagatani, T.: Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction. Phys. Rev. E 60(6), 6395–6401 (1999)

    Article  Google Scholar 

  34. Treiber, M., Hennecke, A., Helbing, D.: Derivation, properties, and simulation of a gas-kinetic-based, non-local traffic model. Phys. Rev. E 59(1), 239–253 (1999)

    Article  Google Scholar 

  35. Tang, T.Q., Huang, H.J., Gao, Z.Y.: Stability of the car-following model on two lanes. Phys. Rev. E 72(066124), 1–7 (2005)

    Google Scholar 

  36. Ge, H.X., Meng, X.P., Ma, J., Lo, S.M.: An improved car-following model considering influence of other factors on traffic jam. Phys. Lett. A 377(1), 9–12 (2012)

    Article  Google Scholar 

  37. Yu, G.Z., Wang, P.C., Wu, X.K., Wang, Y.P.: Linear and nonlinear stability analysis of a car-following model considering velocity difference of two adjacent lanes. Nonlinear Dyn. 84(1), 1–11 (2015)

    Google Scholar 

  38. Lv, W., Song, W.G., Fang, Z.M.: Three-lane changing behaviour simulation using a modified optimal velocity model. Phys. A 390(12), 2303–2314 (2011)

    Article  Google Scholar 

  39. Jiang, R., Wu, Q.S., Zhu, Z.: Full velocity difference model for a car-following theory. Phys. Rev. E 64(017101), 1–4 (2001)

    Google Scholar 

  40. Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58(1), 133–138 (1998)

    Article  Google Scholar 

  41. Yu, S., Shi, Z.: Dynamics of connected cruise control systems considering velocity changes with memory feedback. Measurement 64, 34–48 (2015)

    Article  Google Scholar 

  42. Yu, S.W., Shi, Z.K.: An extended car-following model considering vehicular gap fluctuation. Measurement 70, 137–147 (2015)

    Article  Google Scholar 

  43. Yu, S.W., Shi, Z.K.: An extended car-following model at signalized intersections. Phys. A 407, 152–159 (2014)

    Article  MathSciNet  Google Scholar 

  44. Zhou, J.: An extended visual angle model for car-following theory. Nonlinear Dyn. 81(1), 549–560 (2015)

    Article  Google Scholar 

  45. Peng, G.H., Cheng, R.J.: A new car-following model with the consideration of anticipation optimal velocity. Phys. A 392(17), 3563–3569 (2013)

    Article  MathSciNet  Google Scholar 

  46. Yu, S.W., Shi, Z.K.: An improved car-following model considering relative velocity fluctuation. Commun. Nonlinear Sci. Numer. Simul. 36, 319–326 (2016)

    Article  Google Scholar 

  47. Li, X., Sun, J.Q.: Studies of vehicle lane-changing to avoid pedestrians with cellular automata. Phys. A 438, 251–271 (2015)

    Article  Google Scholar 

  48. Anvari, B., Bell, M.G., Sivakumar, A., Ochieng, W.Y.: Modelling shared space users via rule-based social force model. Transp. Res. Part C: Emerg. Technol. 51, 83–103 (2015)

    Article  Google Scholar 

  49. Helbing, D., Jiang, R., Treiber, M.: Analytical investigation of oscillations in intersecting flows of pedestrian and vehicle traffic. Phys. Rev. E 72(4), 1–11 (2005)

    Article  Google Scholar 

  50. Chen, P., Wu, C.Z., Zhu, S.Y.: Interaction between vehicles and pedestrians at uncontrolled mid-block crosswalks. Saf. Sci. 82, 68–76 (2016)

    Article  Google Scholar 

  51. Zhang, X., Chang, G.L.: A dynamic evacuation model for pedestrian-vehicle mixed-flow networks. Transp. Res. Part C: Emerg. Technol. 40, 75–92 (2014)

    Article  Google Scholar 

  52. Ito, H., Nishinari, K.: Totally asymmetric simple exclusion process with a time-dependent boundary: interaction between vehicles and pedestrians at intersections. Phys. Rev. E 89(4), 1–25 (2014)

    Article  Google Scholar 

  53. Xin, X.Y., Jia, N., Zheng, L., Ma, S.F.: Power-law in pedestrian crossing flow under the interference of vehicles at an un-signalized midblock crosswalk. Phys. A 406, 287–297 (2014)

    Article  Google Scholar 

  54. Jin, S., Qu, X.B., Xu, C., Wang, D.H.: Dynamic characteristics of traffic flow with consideration of pedestrians road-crossing behavior. Phys. A 392(18), 3881–3890 (2013)

    Article  MathSciNet  Google Scholar 

  55. Jiang, R., Wu, Q.S.: The moving behavior of a large object in the crowds in a narrow channel. Phys. A 364, 457–463 (2006)

    Article  Google Scholar 

  56. Jiang, R., Wu, Q.S.: Interaction between vehicle and pedestrians in a narrow channel. Phys. A 368(1), 239–246 (2006)

    Article  Google Scholar 

  57. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4), 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  58. Peng, G.H., Sun, D.H.: Multiple car-following model of traffic flow and numerical simulation. Chin. Phys. B 18(12), 5420–5430 (2009)

  59. Whitham, G.B.: Exact solutions for a discrete system arising in traffic flow. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 428, 49–69 (1990)

  60. Tian, J.F., Jia, B., Li, X.G., Gao, Z.Y.: A new car-following model considering velocity anticipation. Chin. Phys. B 19(1), 1–7 (2010)

    Google Scholar 

  61. Sawada, S.: Generalized optimal velocity model for traffic flow. Int. J. Mod. Phys. C 13(1), 1–12 (2002)

    Article  MATH  Google Scholar 

  62. Li, Y.F., Zhang, L., Zheng, H., He, X.Z., Peeta, S., Zheng, T.X., Li, Y.G.: Evaluating the energy consumption of electric vehicles based on car-following model under non-lane discipline. Nonlinear Dyn. 82(1), 629–641 (2015)

    Article  Google Scholar 

  63. Jin, S., Wang, D.H., Tao, P.F., Li, P.F.: Non-lane-based full velocity difference car following model. Phys. A 389(21), 4654–4662 (2010)

    Article  Google Scholar 

  64. Yu, X.: Analysis of the stability and density waves for traffic flow. Chin. Phys. 11(11), 1128–1134 (2002)

    Article  Google Scholar 

  65. Li, Z.P., Liu, Y.C.: Analysis of stability and density waves of traffic flow model in an its environment. Euro. Phys. J. B-Condens. Matter Complex Syst. 53(3), 367–374 (2006)

    Article  MATH  Google Scholar 

  66. Nagatani, T.: Traffic jams induced by fluctuation of a leading car. Phys. Rev. E 61(4), 3534–3540 (2000)

    Article  Google Scholar 

  67. Nagatani, T., Nakanishi, K., Emmerich, H.: Phase transition in a difference equation model of traffic flow. J. Phys. A: Math. Gen. 31(24), 5431–5438 (1998)

  68. Ge, H.X., Cheng, R.J., Dai, S.Q.: KdV and kink–antikink solitons in car-following models. Phys. A 357(3), 466–476 (2005)

    Article  MathSciNet  Google Scholar 

  69. Zheng, L.J., Tian, C., Sun, D.H., Liu, W.N.: A new car-following model with consideration of anticipation driving behavior. Nonlinear Dyn. 70(2), 1205–1211 (2012)

    Article  MathSciNet  Google Scholar 

  70. Liu, F., Cheng, R., Zheng, P., Ge, H.: TDGL and mKdV equations for car-following model considering traffic jerk. Nonlinear Dyn. 83(1), 793–800 (2016)

    Article  Google Scholar 

  71. Tomer, E., Safonov, L., Havlin, S.: Presence of many stable nonhomogeneous states in an inertial car-following model. Phys. Rev. Lett. 84, 382–385 (2000)

    Article  Google Scholar 

  72. Berg, P., Mason, A., Woods, A.: Continuum approach to car-following models. Phys. Rev. E 61, 1056–1066 (2000)

    Article  Google Scholar 

  73. Lee, H.K., Lee, H.W., Kim, D.: Macroscopic traffic models from microscopic car-following models. Phys. Rev. E 64(056126), 1–12 (2001)

    Google Scholar 

  74. Kurtze, D.A., Hong, D.C.: Traffic jams, granular flow, and soliton selection. Phys. Rev. E 52(1), 218–221 (1995)

    Article  Google Scholar 

  75. Kerner, B.S., Konhäuser, P.: Cluster effect in initially homogeneous traffic flow. Phys. Rev. E 48(4), 2335–2338 (1993)

    Article  Google Scholar 

  76. Ge, H.X., Cheng, R.J., Li, Z.P.: Two velocity difference model for a car following theory. Phys. A 387(21), 5239–5245 (2008)

    Article  Google Scholar 

  77. Nagatani, T.: Modified KdV equation for jamming transition in the continuum models of traffic. Phys. A 261(3), 599–607 (1998)

    Article  MathSciNet  Google Scholar 

  78. Jia, Y.H., Du, Y.M., Wu, J.P.: Stability analysis of a car-following model on two lanes. Math. Probl. Eng. 2014, 1–9 (2014)

    Google Scholar 

  79. Nagatani, T.: Density waves in traffic flow. Phys. Rev. E 61(4), 3564–3570 (2000)

    Article  Google Scholar 

  80. Ge, H.X., Dai, S.Q., Xue, Y., Dong, L.Y.: Stabilization analysis and modified Korteweg-de Vries equation in a cooperative driving system. Phys. Rev. E 71(6), 1–7 (2005)

    Article  MathSciNet  Google Scholar 

  81. Konishi, K., Kokame, H., Hirata, K.: Coupled map car-following model and its delayed-feedback control. Phys. Rev. E 60(4), 4000–4007 (1999)

    Article  Google Scholar 

  82. Tadaki, S., Kikuchi, M., Sugiyama, Y., Yukawa, S.: Coupled map traffic flow simulator based on optimal velocity functions. J. Phys. Soc. Jpn. 67(7), 2270–2276 (1998)

    Article  Google Scholar 

  83. Bando, M., Hasebe, K., Nakanishi, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Phenomenological study of dynamical model of traffic flow. J. Phys. I 5(11), 1389–1399 (1995)

    Google Scholar 

  84. Carey, N.: Establishing pedestrian walking speeds. Tech. rep. (2005)

  85. Edward, H.: The Hidden Dimension. Doubleday, Garden City (1966)

    Google Scholar 

  86. Ge, H.X.: Modified coupled map car-following model and its delayed feedback control scheme. Chin. Phys. B 20(9), 1–9 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2016YFB0100902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinkai Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yu, G., Wu, X. et al. Linear and nonlinear stability analysis of an extended car-following model considering pedestrians on adjacent lane. Nonlinear Dyn 88, 777–789 (2017). https://doi.org/10.1007/s11071-016-3275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3275-2

Keywords

Navigation