Skip to main content
Log in

Effect of dry friction on vibrations of sampled-data mechatronic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we derive the solution of the damped oscillator with Coulomb friction, where the damping factor is negative. The aim of this study is to present the stabilization effect of Coulomb friction of an otherwise unstable system. This phenomenon typically occurs in robotic systems, where the dry friction in the drivetrain of the arms compensates for the possible instability caused by the sampling time in the digital controller. The results help to recognize the interplay of these phenomena just by looking at the peculiar qualitative picture of the corresponding vibration signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armstrong-Hélouvry, B., Dupont, P., de Wit, C.C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7), 1083–1138 (1994)

    Article  MATH  Google Scholar 

  2. Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. Appl. Mech. Rev. 58(6), 389–411 (2005)

    Article  Google Scholar 

  3. Axler, S.: Linear Algebra Done Right, 3rd edn. Springer, Berlin (2015)

    MATH  Google Scholar 

  4. Bona, F.D., Jacazio, G.: Simulation of mechanical drives with generalized power losses. Math. Comput. Model. 11, 1178–1182 (1988)

    Article  Google Scholar 

  5. Budai, C., Kovács, L.L.: Limitations caused by sampling and quantization in position control of a single axis robot. In: Proceedings of the XV. International Ph.D. Workshop, pp. 466–471. Wisla, Poland (2013)

  6. Budai, C., Kovács, L.L.: Friction effects on stability of a digitally controlled pendulum. Period. Polytech. Mech. Eng. 59(4), 176–181 (2015)

    Article  Google Scholar 

  7. Csernák, G., Stépán, G., Shaw, S.W.: Sub-harmonic resonant solutions of a harmonically excited dry friction oscillator. Nonlinear Dyn. 50, 93–109 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. di Bernardo, M., Budd, C., Champneys, A., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  9. Feeny, B., Moon, F.C.: Chaos in a forced dry friction oscillator: experiment and numerical modelling. J. Sound Vib. 170(3), 303–323 (1994)

    Article  MATH  Google Scholar 

  10. Gäfvert, M.: Dynamic model based friction compensation on the furuta pendulum. In: Proceedings of the 1999 IEEE International Conference on Control Applications, vol. 2, pp. 1260–1265. Kohala Coast, HI, USA (1999)

  11. Gillespie, R., Cutkosky, M.: Stable user-specific haptic rendering of the virtual wall. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, vol. 58, pp. 397–406. Atlanta, GA, USA (1996)

  12. Goncalves, J., Megretski, A., Dahleh, M.: Global stability of relay feedback systems. IEEE Trans. Autom. Control 46(4), 550–562 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haas, V.: Coulomb friction in feedback control systems. Trans. Am. Inst. Electr. Eng. II Appl. Ind. 72(2), 119–126 (1953)

    Google Scholar 

  14. Hartog, J.P.D.: Forced vibrations with combined coulomb and viscous friction. Trans. Am. Soc. Mech. Eng. 53, 107–115 (1931)

    MATH  Google Scholar 

  15. Iurian, C., Ikhouane, F., Rodellar, J., Grino, R.: Identification of a system with dry friction. Technical Report, Universitat Politecnica de Catalunya (2005)

  16. Kovács, L.L., Kövecses, J., Stépán, G.: Analysis of effects of differential gain on dynamic stability of digital force control. Int. J. Nonlinear Mech. 43(6), 514–520 (2008)

    Article  Google Scholar 

  17. Kövecses, J., Kovács, L.L., Stépán, G.: Dynamics modeling and stability of robotic systems with discrete-time force control. Arch. Appl. Mech. 77(5), 293–299 (2007)

    Article  MATH  Google Scholar 

  18. Kuo, B.C.: Digital Control Systems, 2nd edn. Oxford University Press, Oxford (2003)

    Google Scholar 

  19. Licskó, G., Csernák, G.: On the chaotic behaviour of a simple dry-friction oscillator. Math. Comput. Simul. 95, 55–62 (2013)

    Article  MathSciNet  Google Scholar 

  20. Olsson, H., Åström, K., de Wit, C.C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4(3), 176–195 (1998)

    Article  MATH  Google Scholar 

  21. Stépán, G.: Vibrations of machines subjected to digital force control. Int. J. Solids Struct. 38(10–13), 2149–2159 (2001)

    Article  MATH  Google Scholar 

  22. Stépán, G., Steven, A., Maunder, L.: Design principles of digitally controlled robots. Mech. Mach. Theory 25(5), 515–527 (1990)

    Article  Google Scholar 

  23. Townsend, W., Salisbury, J.: The effect of coulomb friction and stiction on force control. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 883–889 (1987)

  24. Wojewoda, J., Stefaski, A., Wiercigroch, M., Kapitaniak, T.: Hysteretic effects of dry friction: modelling and experimental studies. Philos. Trans. R. Soc. A 366(1866), 747–765 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research work reported here was supported by the MTA-BME Research Group on Dynamics of Machines and Vehicles, the Natural Sciences and Engineering Research Council of Canada, and the Fonds de Recherche du Québec—Nature et Technologies. The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Budai.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budai, C., Kovács, L.L., Kövecses, J. et al. Effect of dry friction on vibrations of sampled-data mechatronic systems. Nonlinear Dyn 88, 349–361 (2017). https://doi.org/10.1007/s11071-016-3246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3246-7

Keywords

Navigation