Skip to main content
Log in

UDE-based decoupled full-order sliding mode control for a class of uncertain nonlinear MIMO systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a generalized control scheme for the class of nonlinear multiple-input multiple-output (MIMO) uncertain system with cross-coupling and nonlinearity in their input channels under the influence of external disturbances is presented. This is accomplished using full-order model following sliding mode control based on uncertainty and disturbance estimator (UDE) technique. The fourth-order uncertain nonlinear MIMO system is separated into multiple single-input single-output double integrator subsystems by considering the effect of input coupling and nonlinearity as a disturbance. The UDE is designed to estimate the plant uncertainties as well as external disturbances without the knowledge of the bounds on the uncertainties. The proposed method decouples the system and overcomes the problem of high initial control which ultimately eliminates the reaching phase and the chattering phenomenon which is generally occurred in sliding mode control. The effectiveness of the proposed control scheme is demonstrated through numerical simulation of two-link manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Chen, M., Qing-Xian, W., Cui, R.-X.: Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems. ISA Trans. 52(2), 198–206 (2013)

    Article  Google Scholar 

  2. Noroozi, N., Roopaei, M., Jahromi, M.Z.: Adaptive fuzzy sliding mode control scheme for uncertain systems. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3978–3992 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayramoglu, H., Komurcugil, H.: Nonsingular decoupled terminal sliding-mode control for a class of fourth-order nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 18(9), 2527–2539 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bayramoglu, H., Komurcugil, H.: Time-varying sliding-coefficient-based terminal sliding mode control methods for a class of fourth-order nonlinear systems. Nonlinear Dyn. 73(3), 1645–1657 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S.-Y., Fang-Ming, Y., Chung, H.-Y.: Decoupled fuzzy controller design with single-input fuzzy logic. Fuzzy Sets Syst. 129(3), 335–342 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lo, J.-C., Kuo, Y.-H.: Decoupled fuzzy sliding-mode control. IEEE Trans. Fuzzy Syst. 6(3), 426–435 (1998)

    Article  Google Scholar 

  7. Wang, J.-Q.: Robust decentralized control of robot manipulators. Int. J. Syst. Sci. 30(3), 323–330 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yorgancioglu, F., Komurcugil, H.: Decoupled sliding-mode controller based on time-varying sliding surfaces for fourth-order systems. Expert Syst. Appl. 37(10), 6764–6774 (2010)

    Article  Google Scholar 

  9. Beschi, M., Berenguel, M., Visioli, A., Guzmán, J.L., Yebra, L.J.: Implementation of feedback linearization GPC control for a solar furnace. J. Process Control 23(10), 1545–1554 (2013)

    Article  MATH  Google Scholar 

  10. Farmad, M., Farhangi, S., Gharehpetian, G.B., Afsharnia, S.: Nonlinear controller design for IPC using feedback linearization method. Int. J. Electr. Power Energy Syst. 44(1), 778–785 (2013)

    Article  Google Scholar 

  11. Lindlau, J.D., Knospe, C.R.: Feedback linearization of an active magnetic bearing with voltage control. IEEE Trans. Control Syst. Technol. 10(1), 21–31 (2002)

    Article  Google Scholar 

  12. DeCarlo, R.A., Zak, S.H., Matthews, G.P.: Variable structure control of nonlinear multivariable systems: a tutorial. Proc. IEEE 76(3), 212–232 (1988)

    Article  Google Scholar 

  13. Gao, W., Hung, J.C.: Variable structure control of nonlinear systems: a new approach. IEEE Trans. Ind. Electron. 40(1), 45–55 (1993)

    Article  Google Scholar 

  14. Utkin, V.I.: Survey paper variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

  15. Young, D.K., Utkin, V.I., Ozguner, U.: A control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol. 7(3), 328–342 (1999)

    Article  Google Scholar 

  16. Youcef-Toumi, K., Ito, O.: A time delay controller for systems with unknown dynamics. ASME J. Dyn. Syst. Meas Control 112(1), 133–142 (1990)

    Article  MATH  Google Scholar 

  17. Chen, W.-H.: Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. J. Guid. Control Dyn. 26(1), 161–166 (2003)

    Article  Google Scholar 

  18. Chang, P.H., Lee, J.W.: A model reference observer for time-delay control and its application to robot trajectory control. IEEE Trans. Control Syst. Technol. 4(1), 2–10 (1996)

    Article  Google Scholar 

  19. Zeinali, M., Notash, L.: Adaptive sliding mode control with uncertainty estimator for robot manipulators. Mech. Mach. Theory 45(1), 80–90 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Talole, S.E., Kolhe, J.P., Phadke, S.B.: Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans. Ind. Electron. 57(4), 1411–1419 (2010)

    Article  Google Scholar 

  21. Yun, J.N., Su, J.-B.: Design of a disturbance observer for a two-link manipulator with flexible joints. IEEE Trans. Control Syst. Technol. 22(2), 809–815 (2014)

    Article  Google Scholar 

  22. Chen, M., Jing, Y.: Disturbance observer-based adaptive sliding mode control for near-space vehicles. Nonlinear Dyn. 82(4), 1671–1682 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grochmal, T., Lynch, A.F.: Precision tracking of a rotating shaft with magnetic bearings by nonlinear decoupled disturbance observers. IEEE Trans. Control Syst. Technol 15(6), 1112–1121 (2007)

    Article  Google Scholar 

  24. Zhong, Q.-C., Rees, D.: Control of uncertain lti systems based on an uncertainty and disturbance estimator. ASME J. Dyn. Syst. Meas. Control 126(4), 905–910 (2004)

    Article  Google Scholar 

  25. Deshpande, V.S., Phadke, S.B.: Control of uncertain nonlinear systems using an uncertainty and disturbance estimator. ASME J. Dyn. Syst. Meas. Control 134(2), 024501 (2012)

    Article  Google Scholar 

  26. Kuperman, A., Zhong, Q.-C.: Robust control of uncertain nonlinear systems with state delays based on an uncertainty and disturbance estimator. Int. J. Robust Nonlinear Control 21(1), 79–92 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ren, B., Zhong, Q.-C., Chen, J.: Robust control for a class of non-affine nonlinear systems based on the uncertainty and disturbance estimator. IEEE Trans. Ind. Electron. 62(9), 5881–5888 (2015)

    Article  Google Scholar 

  28. Sanz, R., Garcia, P., Zhong, Q.-C., Albertos, P.: Robust control of quadrotors based on an uncertainty and disturbance estimator. ASME J. Dyn. Syst. Meas. Control 138(7), 071006 (2016)

    Article  Google Scholar 

  29. Shendge, P.D., Suryawanshi, P.V., Patre, B.M.: Robust sliding mode control for systems with noise and unmodeled dynamics based on uncertainty and disturbance estimation (UDE). Int. J. Comput. Appl. 1(9), 37–42 (2010)

    Google Scholar 

  30. Suryawanshi, P.V., Shendge, P.D., Phadke, S.B.: Robust sliding mode control for a class of nonlinear systems using inertial delay control. Nonlinear Dyn. 78(3), 1921–1932 (2014)

    Article  Google Scholar 

  31. Talole, S.E., Phadke, S.B.: Model following sliding mode control based on uncertainty and disturbance estimator. ASME J. Dyn. Syst. Meas. Control 130(3), 034501 (2008)

    Article  Google Scholar 

  32. Baek, J., Jin, M., Han, S.: A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans. Ind. Electron. 63(6), 3628–3637 (2016)

    Article  Google Scholar 

  33. Huh, S.H., Bien, Z.: Robust sliding mode control of a robot manipulator based on variable structure-model reference adaptive control approach. IET Control Theory Appl. 1(5), 1355–1363 (2007)

    Article  MathSciNet  Google Scholar 

  34. Jin, X., Yang, G., Li, Y.: Robust fault-tolerant controller design for linear time-invariant systems with actuator failures: an indirect adaptive method. J. Control Theory Appl. 8(4), 471–478 (2010)

    Article  MathSciNet  Google Scholar 

  35. Xiao-Zheng, J., Guang-Hong, Y.: Robust adaptive fault-tolerant compensation control with actuator failures and bounded disturbances. Acta Autom. Sin. 35(3), 305–309 (2009)

    Article  MathSciNet  Google Scholar 

  36. Drazenovic, B.: The invariance conditions in variable structure systems. Automatica 5(3), 287–295 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ackermann, Juergen, Utkin, Vadim: Sliding mode control design based on Ackermann’s formula. IEEE Trans. Autom. Control 43(2), 234–237 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of 35th IEEE Conference of Decision and Control, vol. 4, pp. 4591–4596. IEEE (1996)

  39. Slotine, J.-J.E., Li, W., et al.: Applied nonlinear control, vol. 199. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  40. Khalil, H.K., Grizzle, J.W.: Nonlinear systems, vol. 3. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  41. Corless, M.J., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Control 26(5), 1139 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jin, M., Lee, J., Chang, P.H., Choi, C.: Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Ind. Electron. 56(9), 3593–3601 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. S. B. Phadke for helpful suggestions at COEP, Pune where the seed of this paper germinated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Patre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhadekar, D.D., Patre, B.M. UDE-based decoupled full-order sliding mode control for a class of uncertain nonlinear MIMO systems. Nonlinear Dyn 88, 263–276 (2017). https://doi.org/10.1007/s11071-016-3242-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3242-y

Keywords

Navigation