Skip to main content
Log in

Stability and bifurcation for limit cycle oscillations of an airfoil with external store

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, stability and local bifurcation behaviors for the nonlinear aeroelastic model of an airfoil with external store are investigated using both analytical and numerical methods. Three kinds of degenerated equilibrium points of bifurcation response equations are considered. They are characterized as (1) one pair of purely imaginary eigenvalues and two pairs of conjugate complex roots with negative real parts; (2) two pairs of purely imaginary eigenvalues in nonresonant case and one pair of conjugate complex roots with negative real parts; (3) three pairs of purely imaginary eigenvalues in nonresonant case. With the aid of Maple software and normal form theory, the stability regions of the initial equilibrium point and the explicit expressions of the critical bifurcation curves are obtained, which can lead to static bifurcation and Hopf bifurcation. Under certain conditions, 2-D tori motion may occur. The complex dynamical motions are considered in this paper. Finally, the numerical solutions achieved by the fourth-order Runge–Kutta method agree with the analytic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Lee, H.K., Price, S.J., Wong, Y.S.: Nonlinear aeroelastic analysis of airfoil: bifurcation and chaos. Prog. Aerosp. Sci. 35(3), 205–334 (1999)

    Article  Google Scholar 

  2. Chen, Y.M., Liu, J.K.: Elliptic harmonic balance method for two degree-of-freedom self-excited oscillators. Commun. Nonlinear Sci. Numer. Simul. 14, 916–922 (2009)

    Article  Google Scholar 

  3. Vasconcellos, R., Abdelkefi, A., Hajj, M.R.: Representation and analysis of control surface freeplay nonlinearity. J. Fluid Struct. 31, 79–91 (2012)

    Article  Google Scholar 

  4. Abdelkefi, A., Vasconcellos, R., Nayfeh, A.H., Hajj, M.R.: An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dyn. 71, 159–173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y.M., Liu, J.K.: Nonlinear aeroelastic analysis of an airfoil-store system with a freeplay by precise integration method. J. Fluid Struct. 46, 149–164 (2014)

    Article  Google Scholar 

  6. Liu, J.K., Zhao, L.C.: Bifurcation analysis of airfoils in incompressible flow. J. Sound Vib. 154, 117–124 (1992)

    Article  MATH  Google Scholar 

  7. Abdekefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoelectric energy harvesters. Nonlinear Dyn. 67, 925–939 (2012)

    Article  Google Scholar 

  8. Yang, Y.R., Zhao, L.C.: Subharmonic bifurcation analysis of wing with store flutter. J. Sound Vib. 157, 477–484 (1992)

  9. Guo, H.L., Chen, Y.S.: Supercritical and subcritical Hopf bifurcation and limit cycle oscillations of an airfoil with cubic nonlinearity in supersonic\(\setminus \)hypersonic flow. Nonlinear Dyn. 67, 2637–2649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Alighanbari, H., Price, S.J.: The post-Hopf bifurcation response of an airfoil incompressible two-dimensional flow. Nonlinear Dyn. 10, 381–400 (1996)

    Article  Google Scholar 

  11. Shahrasd, P., Mahzoom, M.: Limit cycle flutter of airfoils in steady and unsteady flows. J. Sound Vib. 256, 213–225 (2002)

    Article  Google Scholar 

  12. Ding, Q., Wang, D.L.: The flutter of an airfoil with cubic structural and aerodynamic non-linearities. Aerosp. Sci. Technol. 10, 427–434 (2006)

    Article  MATH  Google Scholar 

  13. Chen, Y.M., Liu, J.K.: Supercritical as well as subcritical Hopf bifurcation in nonlinear flutter systems. Appl. Math. Mech. 29, 199–206 (2008)

    Article  MATH  Google Scholar 

  14. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

  15. Luongo, A., Paolone, A.: Multiple scale analysis for divergence-Hopf bifurcation of imperfect symmetric systems. J. Sound Vib. 218, 527–539 (1998)

  16. Luongo, A., Di Egidio, A., Paolone, A.: Multiscale analysis of defective multiple-Hopf bifurcations. Comput. Struct. 82, 12705–12722 (2004)

    Article  MathSciNet  Google Scholar 

  17. Luogo, A., Zulli, D.: A paradigmatic system to study the transition from zero/Hopf to double-zero/Hopf bifurcation. Nonlinear Dyn. 70, 111–124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, Y.M., Liu, J.K., Meng, G.: An incremental method of limit cycle oscillations of an airfoil with an external store. Int. J. Nonlinear Mech. 47, 75–83 (2012)

    Article  Google Scholar 

  19. Nayfeh, A.H.: Method of Normal Form. Wiley, New York (1993)

    MATH  Google Scholar 

  20. Carr, J.: Application of Center Manifold Theory. Springer, New York (1981)

    Book  MATH  Google Scholar 

  21. Ogata, K.: Modern Control Engineering. Prentice-Hall, Englewood Cliffs (1970)

    MATH  Google Scholar 

  22. Orlando, L.: Sul problema di Hurwitz relativo alle parti reali delle radici di unequazione algebrica. Math. Ann. 71, 233–245 (1911)

    Article  MathSciNet  MATH  Google Scholar 

  23. Porter, B.: Stability Criteria for Linear Dynamical Systems. Oliver and Boyd, London (1967)

    Google Scholar 

  24. Bi, Q., Yu, P.: Symbolic computation of normal forms for semi-simple cases. J. Comput. Appl. Math. 102, 195–220 (1999)

  25. Wang, X., Chen, F.Q., Zhou, L.Q.: Stability and bifurcation for a flexible beam under a large linear motion with a combination parametric resonance. Nonlinear Dyn. 56, 101–119 (2005)

  26. Yu, P., Bi, Q.: Analysis of non-linear dynamics and bifurcations of a double pendulum. J. Sound Vib. 27, 691–736 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yu, P.: Computation of norm forms via a perturbation technique. J. Sound Vib. 211, 19–38 (1998)

    Article  MATH  Google Scholar 

  28. Yu, P.: Symbolic computation of normal forms for resonant double Hopf bifurcations using a perturbation technique. J. Sound Vib. 247, 615–632 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu, P.: Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales. Nonlinear Dyn. 27, 19–53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yu, P., Zhang, W., Bi, Q.: Vibration analysis on a thin plate with the aid of computation of normal forms. Int. J. Nonlinear Mech. 36, 597–627 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NNSFC) through Grant nos. 11572148 and 11172125, and the National Research Foundation for the Doctoral Program of Higher Education of China through Grant no. 20133218110025. Meanwhile, the authors thank for the suggestions of the reviewers, which are beneficial to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, F. Stability and bifurcation for limit cycle oscillations of an airfoil with external store. Nonlinear Dyn 88, 165–187 (2017). https://doi.org/10.1007/s11071-016-3237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3237-8

Keywords

Navigation