Skip to main content
Log in

Fractional-order charge-controlled memristor: theoretical analysis and simulation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Fractional calculus generalizes integer-order derivatives and integrals. Memristor represents the missing relation between the charge and flux among the conventional elements. This paper introduces the fractional calculus into charge-controlled memristor to establish a unified cubic fractional-order charge-controlled memristor model, which is more general and comprehensive, and the model is analyzed when the fractional-order \(\alpha \) change in the range of 0–1. Some interesting phenomena are found that the IV characteristic is not the conventional double-loop IV curves, but which can be called triple-loop IV curves. The area inside the hysteresis loops decreases not only by the fractional-order \(\alpha \) decreasing, but also by the input frequency \(\omega \) increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Strukov, D., Snider, G., Stewart, D., Williams, R.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  3. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  4. Snider, G.S.: Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18(36), 365202–365202 (2007)

    Article  Google Scholar 

  5. Pino, R.E., Li, H., Chen, Y., Hu, M., Liu, B.: Statistical memristor modeling and case study in neuromorphic computing. In: Proceedings of the IEEE/ACM Design Automation Conference, pp. 585–590 (2012)

  6. Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)

    Article  Google Scholar 

  7. Rajendran, J., Manem, H., Karri, R., Rose, G.S.: An energy-efficient memristive threshold logic circuit. IEEE Trans. Comput. 61(4), 474–487 (2012)

    Article  MathSciNet  Google Scholar 

  8. Manem, H., Rajendran, J., Rose, G.S.: Design considerations for multilevel CMOS/Nano memristive memory. ACM J. Emerg. Technol. Comput. Syst. 8(1), 182–189 (2012)

    Article  Google Scholar 

  9. Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 21–51 (2011)

    Article  MATH  Google Scholar 

  10. Batas, D., Fiedler, H.: A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Trans. Nanotechnol. 10(2), 250–255 (2011)

    Article  Google Scholar 

  11. Liu, W., Wang, F., Ma, X.: A unified cubic flux-controlled memristor: theoretical analysis, simulation and circuit experiment. Int. J. Numer. Model. Electron. Netw. Devices Fields 28(3), 335–345 (2015)

    Article  Google Scholar 

  12. Fouda, M.E., Radwan, A.G.: Charge controlled memristor-less memcapacitor emulator. Electron. Lett. 48(23), 1454–1455 (2012)

    Article  Google Scholar 

  13. Machado, J.A.T.: Fractional generalization of memristor and higher order elements. Commun. Nonlinear Sci. Numer. Simul. 18(2), 264–275 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shin, S., Kim, K., Kang, S.M.: Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 590–598 (2010)

    Article  Google Scholar 

  15. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    MATH  Google Scholar 

  16. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  17. Kvitsinskiĭ, A.A.: Fractional integrals and derivatives: theory and applications. Teoret. Mat. Fiz. 3(2), 397–414 (1993)

    Google Scholar 

  18. Machado, J.A.T., Galhano, A.M.S.F.: Fractional order inductive phenomena based on the skin effect. Nonlinear Dyn. 68(1–2), 107–115 (2012)

    Article  MathSciNet  Google Scholar 

  19. Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)

    Article  Google Scholar 

  20. Westerlund, S.: Dead matter has memory!. Phys. Scr. 43(2), 174–179 (1991)

    Article  MathSciNet  Google Scholar 

  21. Radwan, A.G., Fouda, M.E.: Optimization of fractional-order RLC filters. Circuits Syst. Signal Process. 32(5), 2097–2118 (2013)

    Article  MathSciNet  Google Scholar 

  22. Chen, D., Liu, C., Wu, C.: A New Fractional-order chaotic system and its synchronization with circuit simulation. Circuits Syst. Signal Process. 31(5), 1599–1613 (2012)

    Article  MathSciNet  Google Scholar 

  23. Radwan, A.G., Salama, K.N.: Fractional-order RC and RL circuits. Circuits Syst. Signal Process. 31(6), 1901–1915 (2012)

    Article  MathSciNet  Google Scholar 

  24. Soltan, A., Radwan, A.G., Soliman, A.M.: Fractional order Sallen–Key and KHN filters: stability and poles allocation. Circuits Syst. Signal Process. 34(5), 1461–1480 (2014)

    Article  MATH  Google Scholar 

  25. Machado, J.T.: Fractional order junction. Commun. Nonlinear Sci. Numer. Simul. 20(1), 1–8 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Petras, I., Chen, Y.Q., Coopmans, C.: Fractional-order memristive systems. In: IEEE Conference on the ETFA 2009, pp. 1–8. IEEE (2009)

  27. Zhou, K., Chen, D., Zhang, X., Zhou, R., Iu, H.C.: Fractional-order three-dimensional circuit network. IEEE Trans. Circuits Syst. I Regul. Pap. 62(10), 2401–2410 (2015)

    Article  MathSciNet  Google Scholar 

  28. Chen, D., Wu, C., Iu, H.H.C., Ma, X.: Circuit simulation for synchronization of a fractional-order and integer-order chaotic system. Nonlinear Dyn. 73(3), 1671–1686 (2013)

    Article  MathSciNet  Google Scholar 

  29. Chen, D., Sun, Z., Ma, X., Chen, L.: Circuit implementation and model of a new multi-scroll chaotic system. Int. J. Circuit Theory Appl. 42(4), 407–424 (2014)

    Article  Google Scholar 

  30. Iu, H.H.C., Qi, C., Zhou, R., Chen, D.: Fractional-order L beta C alpha infinite rectangle circuit network. IET Circuits Devices Syst. (2016). doi:10.1049/iet-cds.2015.0247

    Google Scholar 

  31. Fouda, M., Radwan, A.: Fractional-order memristor response under DC and periodic signals. Circuits Syst. Signal Process. 34(3), 961–970 (2015)

    Article  Google Scholar 

  32. Petras, I.: Fractional-order memristor-based chua’s circuit. IEEE Trans. Circuits Syst. II Exp. Briefs 57(12), 975–979 (2010)

    Article  Google Scholar 

  33. Fouda, M.E., Radwan, A.G.: On the fractional-order memristor model. J. Fract. Calc. Appl. 4(1), 1–7 (2015)

    Google Scholar 

  34. Cafagna, D., Grassi, G.: On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn. 70(2), 1185–1197 (2012)

    Article  MathSciNet  Google Scholar 

  35. Bao, H.B., Cao, J.D.: Projective synchronization of fractional-order memristor-based neural networks. Neural Netw. 63, 1–9 (2014)

    Article  MATH  Google Scholar 

  36. Rakkiyappan, R., Velmurugan, G., Xiaodi, L., O’Regan, D.: Global dissipativity of memristor-based complex-valued neural networks with time-varying delays. Neural Process. Lett. 42(3), 1–24 (2014)

    Google Scholar 

  37. Rakkiyappan, R., Velmurugan, G., Cao, J.: Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays. Chaos Soliton Fract. 78(11), 1344–1349 (2015)

    MATH  Google Scholar 

  38. Rakkiyappan, R., Velmurugan, G., Cao, J.: Stability analysis of memristor-based fractional-order neural networks with different memductance functions. Cogn. Neurodyn. 9(2), 145–177 (2014)

    Article  MATH  Google Scholar 

  39. Teng, L., Iu, H.H.C., Wang, X., Wang, X.: Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dyn. 77(1–2), 231–241 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangquan Si.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, G., Diao, L. & Zhu, J. Fractional-order charge-controlled memristor: theoretical analysis and simulation. Nonlinear Dyn 87, 2625–2634 (2017). https://doi.org/10.1007/s11071-016-3215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3215-1

Keywords

Navigation