Skip to main content
Log in

Adaptive neural-network sliding mode cascade architecture of longitudinal tracking control for unmanned vehicles

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Unmanned vehicles have drawn wide attention due to their intrinsic capacity of performing routine tasks for industry, conducting military missions and improving traffic safety. However, since the longitudinal dynamic system of unmanned vehicles inherently has the uncertain nonlinearities and time-varying behavior, longitudinal tracking control is reviewed as a challenging work in the exploitation of unmanned vehicles to deal with the features of uncertain nonlinearities and parametric time varying. In this paper, an adaptive nonlinear cascade control architecture is presented to design the longitudinal speed tracking control for unmanned vehicle, which is a nonholonomic system. Firstly, a upper-level model predictive control law is presented to produce a desired and smooth acceleration in real time, and the saturation characteristic is introduced to limit the accelerations within the range of given values. Then, a lower-level adaptive neuro-network sliding mode control (ANN-SMC) law is presented for dynamically tracking the desired acceleration, in which the uncertain term and the variable structure control term are adaptively adjusted by the neuro-networks, and the stability of proposed ANN-SMC control system is proved by the Lyapunov theory. Finally, simulation and experimental results demonstrate the feasibility and effectiveness of proposed control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Toulotte, P., Delprat, S., Guerra, T., Boonaert, J.: Vehicle spacing control using robust fuzzy control with pole placement in LMI region. Eng. Appl. Artif. Intel. 21(5), 756–768 (2008)

    Article  Google Scholar 

  2. Peng, Y.F.: Adaptive intelligent backstepping longitudinal control of vehicle platoons using output recurrent cerebellar model articulation controller. Expert Syst. Appl. 37(3), 2016–2027 (2010)

    Article  Google Scholar 

  3. Wang, J., Zhang, L., Zhang, D., Li, K.: An adaptive longitudinal driving assistance system based on driver characteristics. IEEE Trans. Intell. Transp. Syst. 14(1), 1–12 (2013)

    Article  Google Scholar 

  4. Hakgo, K., Dongwook, K., Insoo, S., Yi, K.: Time-varying parameter adaptive vehicle speed control. IEEE Trans. Veh. Technol. 61(2), 581–588 (2016)

    Google Scholar 

  5. Li, S., Li, K., Rajamani, R.: Model predictive multi-objective vehicle adaptive cruise control. IEEE Trans. Control Syst. Technol. 19(3), 556–566 (2011)

    Article  Google Scholar 

  6. Thomas, S., Luigi, R.: A model predictive cooperative cruise control approach. In: American control conference, Washington, USA, June 17–19 (2013)

  7. Hu, P., Guo, J., Li, L., Wang, R.: A robust longitudinal sliding-mode controller design for autonomous ground vehicle based on fuzzy logic. Int. J. Veh. Auton. Syst. 11(4), 368–383 (2013)

    Article  Google Scholar 

  8. Gerdes, J., Hedrick, J.: Vehicle speed and spacing control via coordinated throttle and brake action. Control Eng. Pract. 5(11), 1607–1614 (1997)

    Article  Google Scholar 

  9. Nouveliere, L., Mammar, S.: Experimental vehicle longitudinal control using a second order sliding mode technique. Control Eng. Pract. 15(8), 934–954 (2007)

    Article  Google Scholar 

  10. Ferrara, A., Vecchio, C.: Second order sliding mode control of vehicles with distributed collision avoidance capabilities. Mechatronics 19(4), 471–477 (2009)

    Article  Google Scholar 

  11. Liang, H., Chong, K.T.: Vehicle longitudinal brake control using variable parameter sliding control. Control Eng. Pract. 11(4), 403–411 (2003)

    Article  Google Scholar 

  12. Hongyi, L., Jinyong, Y., Chris, H., Honghai, L.: Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach. IEEE Trans. Ind. Eletron. 60(8), 3328–3338 (2013)

    Article  Google Scholar 

  13. Hongyi, L., Peng, S., Deyin, Y., Ligang, W.: Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 64(2), 133–142 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Yang, Y., Wu, J., Zheng, W.: Station-keeping attitude control for an autonomous airship using feedback linearization and sliding mode control. Int. J. Innov. Comput. Inf. Control 8(9), 152–165 (2012)

    Google Scholar 

  15. Nasirin, A., Nguang, S.K., Swain, A.: Adaptive sliding mode control for a class of MIMO nonlinear systems with uncertainties. J. Frankl. Inst. 351(4), 2048–2061 (2014)

    Article  MathSciNet  Google Scholar 

  16. Bong, S., Sung, J., Jin, B., Yoon, H.: Adaptive neural sliding mode control of nonholomic wheeled mobile robots with model uncertainty. IEEE Trans. Control Syst. Technol. 17(1), 207–214 (2009)

    Article  Google Scholar 

  17. Peric, S.L., Antic, D.S., Milovanovic, M.B., Mitic, D.B.: Quasi-sliding mode control with orthogonal endocrine neural network-based estimator applied in anti-lock braking system. IEEE/ASME Trans. Mechatron. 21(2), 754–764 (2016)

    Article  Google Scholar 

  18. Rajamani, R.: Vehicle dynamics and control. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  19. Jullierme, E., Alves, D.: Longitudinal model identification and velocity control of an autonomous car. IEEE Trans. Intell. Transp. Syst. 16(2), 777–786 (2015)

    Google Scholar 

  20. Dai, L., Xia, Y., Gao, Y., et al.: Cooperative distributed stochastic MPC for systems with state estimation and coupled probabilistic constraints. Automatica 61(11), 89–96 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Siavash, K., Mosttafa, J., Hossein, A.: Adaptive fuzzy SMC based formation design for swarm of unknown time-delayed robots. Nonlinear Dyn. 69(4), 1825–1835 (2012)

    Article  MathSciNet  Google Scholar 

  22. Nasirin, A., Nguang, S.K., Swain, A.: Adaptive sliding mode control for a class of MIMO nonlinear systems with uncertainties. J. Frankl. Inst. 351(4), 2048–2061 (2014)

    Article  MathSciNet  Google Scholar 

  23. Yang, Y., Yan, Y., Zhu, Z., Zheng, W.: Positioning control for an unmanned airship using sliding mode control based on fuzzy approximation. Proc. Inst. Mech. Eng. G J Aerosp. 228(12), 2627–2640 (2014)

    Article  Google Scholar 

  24. Yang, Y., Wu, J., Zheng, W.: Trajectory tracking for an autonomous airship using fuzzy adaptive sliding mode control. J. Zhejiang Univ. Sci. C. 13(7), 534–543 (2012)

    Article  Google Scholar 

  25. Mohammadzadeh, A., Ghaemi, S.: A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network. Neurocomputing 191(5), 200–213 (2016)

    Article  Google Scholar 

  26. Ge, S., Hang, C., Lee, T.: Stable Adaptive Neural Network Control. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  27. Kosari, A., Maghsoudi, H., Lavaei, A., Ahmadi, R.: Optimal online trajectory generation for a flying robot for terrain following purposes using neural network. Proc. Inst. Mech. Eng. G J Aerosp. 229(6), 1124–1141 (2015)

    Article  Google Scholar 

  28. Li, S., Jiang, X.Q.: RBF neural network based second-order sliding mode guidance for Mars entry under uncertainties. Aerosp. Sci. Technol. 43, 226–235 (2015)

    Article  Google Scholar 

  29. Yan, Ye: Neural network approximation-based nonsingular terminal sliding mode control for trajectory tracking of robotic airships. Aerosp. Sci. Technol. 54, 192–197 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No.61304193, No.U1564208), National Basic Research Project of China (No. 2016YFB0100900). Authors are grateful for helpful comments from referees to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghua Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Luo, Y. & Li, K. Adaptive neural-network sliding mode cascade architecture of longitudinal tracking control for unmanned vehicles. Nonlinear Dyn 87, 2497–2510 (2017). https://doi.org/10.1007/s11071-016-3206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3206-2

Keywords

Navigation