Skip to main content
Log in

Dynamic characteristics of flexible rotor with squeeze film damper excited by two frequencies

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is focused on the dynamic characteristics of a flexible rotor with squeeze film damper excited by two frequencies. The multiple harmonic balance method and Runge–Kutta method are combined to analyze the periodic solution and quasi-periodic solution of the system. The nonlinear characteristics discussed are fastened on the resonance region corresponding, respectively, to the rigid body translation mode and first bending mode. In the former region, the motion of disk center shows the ‘hard spring’ characteristic, and the combination frequencies are dominated by the difference between double low excitation frequency and high excitation frequency and the difference between double high excitation frequency and low excitation frequency. In the latter region, however, the combination frequencies are dominated by the difference between high excitation frequency and double low excitation frequency and the difference between triple low excitation frequency and double high excitation frequency. Moreover, the motion of disk center shows a kind of ‘cross’, ‘soft spring’ or ‘hard spring’ characteristics with the variation of the ratio of the two excitation frequencies. Besides, the independent quasi-periodic solution coexists with the periodic solution in these cases. The system is sensitive to the ratio of excitation frequencies, and it could have two independent quasi-periodic solutions in some conditions. The results in this paper provide a reveal of nonlinear characteristics in this type of double excitation nonlinear rotor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cooper, S.: Preliminary investigation of oil films for the control of vibration. In: Proceedings of the Lubrication and Wear Convention, pp. 305–315. Institution of Mechanical Engineers (1963)

  2. Mohan, S., Hahn, E.J.: Design of squeeze film damper supports for rigid rotors. ASME J. Manuf. Sci. Eng. 96(3), 976–982 (1974)

    Google Scholar 

  3. Levesley, M.C., Holmes, R.: The efficient computation of the vibration response of an aero-engine rotor-damper assembly. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 208(1), 41–51 (1994)

    Article  Google Scholar 

  4. Taylor, D.L., Kumar, B.R.K.: Nonlinear response of short squeeze film dampers. ASME J. Tribol. 102(1), 51–58 (1980)

    Google Scholar 

  5. Gunter, E.J., Barrett, L.E., Allaire, P.E.: Design of nonlinear squeeze-film dampers for aircraft engines. ASME J. Tribol. 99(1), 57–64 (1977)

    Google Scholar 

  6. Zeidan, F., Vance, J.: Cavitation and air entrainment effects on the response of squeeze film supported rotors. ASME J. Tribol. 112(2), 347–353 (1990)

    Article  Google Scholar 

  7. Nikolajsen, J.L., Holmes, R.: Investigation of squeeze-film isolators for the vibration control of a flexible rotor. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 21(4), 247–252 (1979)

    Google Scholar 

  8. Holmes, R., Dogan, M.: Investigation of a rotor bearing assembly incorporating a squeeze-film damper bearing. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 24(3), 129–137 (1982)

    Google Scholar 

  9. Sykes, J.E.H., Holmes, R.: The effects of bearing misalignment on the non-linear vibration of aero-engine rotor-damper assemblies. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 204(2), 83–99 (1990)

    Article  Google Scholar 

  10. Zhao, J.Y., Linnett, I.W., McLean, L.J.: Stability and bifurcation of unbalanced response of a squeeze film damped flexible rotor. ASME J. Tribol. 116(2), 361–368 (1994)

    Article  Google Scholar 

  11. Zhao, J.Y., Linnett, I.W., McLean, L.J.: Subharmonic and quasi-periodic motions of an eccentric squeeze film damper-mounted rigid rotor. ASME J. Vib. Acoust. 116(3), 357–363 (1994)

    Article  Google Scholar 

  12. Zhu, C.S., Robb, D.A., Ewins, D.J.: Analysis of the multiple-solution response of a flexible rotor supported on non-linear squeeze film dampers. J. Sound Vib. 252, 389–408 (2002)

    Article  Google Scholar 

  13. Sundararajan, P., Noah, S.T.: Dynamics of forced nonlinear systems using shooting/arc-length continuation method–application to rotor systems[J]. ASME J. Vib. Acoust. 119(1), 9–20 (1997)

    Article  Google Scholar 

  14. Inayat-Hussain, J.I., Kanki, H., Mureithi, N.W.: On the bifurcations of a rigid rotor response in squeeze-film dampers. J. Fluids Struct. 17, 433–459 (2003)

    Article  MATH  Google Scholar 

  15. Inayat-Hussain, J.I., Kanki, H., Mureithi, N.W.: Chaos in the unbalance response of a rigid rotor in cavitated squeeze-film dampers without centering springs. Chaos Soliton Fract. 13(4), 929–945 (2002)

    Article  MATH  Google Scholar 

  16. Bonello, P., Brennan, M.J., Holmes, R.: Non-linear modelling of rotor dynamic systems with squeeze film dampers—an efficient integrated approach. J. Sound Vib. 249(4), 743–773 (2002)

  17. Chang-Jian, C.W., Kuo, J.K.: Bifurcation and chaos for porous squeeze film damper mounted rotor-bearing system lubricated with micropolar fluid. Nonlinear Dyn. 58(4), 697–714 (2009)

    Article  MATH  Google Scholar 

  18. Boyaci, A., Lu, D., Schweizer, B.: Stability and bifurcation phenomena of Laval/Jeffcott rotors in semi-floating ring bearings. Nonlinear Dyn. 79(2), 1535–1561 (2015)

    Article  Google Scholar 

  19. Schweizer, B.: Oil whirl, oil whip and whirl/whip synchronization occurring in rotor systems with full-floating ring bearings. Nonlinear Dyn. 57(4), 509–532 (2009)

    Article  MATH  Google Scholar 

  20. Zhou, H.L., Luo, G.H., Chen, G., et al.: Analysis of the nonlinear dynamic response of a rotor supported on ball bearings with floating-ring squeeze film dampers. Mech. Mach. Theory 59, 65–77 (2013)

    Article  Google Scholar 

  21. Hai, P.M., Bonello, P.: An impulsive receptance technique for the time domain computation of the vibration of a whole aero-engine model with nonlinear bearings. J. Sound Vib. 318(3), 592–605 (2008)

    Article  Google Scholar 

  22. Bonello, P., Hai, P.M.: Computational studies of the unbalance response of a whole aero-engine model with squeeze-film bearings. ASME J. Eng. Gas Turbines Power 132(3), 032504 (2010)

    Article  Google Scholar 

  23. Bonello, P., Pham, H.M.: A theoretical and experimental investigation of the dynamic response of a squeeze-film damped twin-shaft test rig. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 228(2), 218–229 (2014)

    Article  Google Scholar 

  24. Booker, J.F.: A table of the journal bearing integral. ASME J. Basic Eng. 87(2), 533–535 (1965)

    Article  Google Scholar 

  25. Kim, Y.B., Choi, S.K.: A multiple harmonic balance method for the internal resonant vibration of a non-linear Jeffcott rotor. J. Sound Vib. 208(5), 745–761 (1997)

    Article  Google Scholar 

  26. Zhang, Z.Z., Chen, Y.S., Cao, Q.J.: Bifurcations and hysteresis of varying compliance vibrations in the primary parametric resonance for a ball bearing. J. Sound Vib. 350, 171–184 (2015)

    Article  Google Scholar 

  27. Hsu, C.S.: On approximating a general linear periodic system. J. Math. Anal. Appl. 45(1), 234–251 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. McLean, L.J., Hahn, E.J.: Stability of squeeze film damped multi-mass flexible rotor bearing systems. ASME J. Tribol. 107(3), 402–409 (1985)

    Article  Google Scholar 

  29. Inayat-Hussain, J.I.: Bifurcations in the response of a flexible rotor in squeeze-film dampers with retainer springs. Chaos Soliton Fract. 39(2), 519–532 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports from the National Basic Research Program (973 Program) of China (Grant No. 2015CB057400), the National Natural Science Foundation of China (Grant No. 11602070) and China Postdoctoral Science Foundation (Grant No. 2016M590277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hou.

Appendices

Appendix 1: List of symbols

\(a_{j,k ,l} , b_{j,k,l}\) :

Harmonic coefficients of dimensionless displacements, dimensionless

A :

Periodic matrix, dimensionless

B :

Dimensionless bearing parameter of squeeze film damper, dimensionless

c :

Clearance of squeeze film damper, m

\(c_{j,k,l} ,d_{j,k,l}\) :

Harmonic coefficients of dimensionless nonlinear forces, dimensionless

\(c_{1}\) :

Damping coefficient corresponding to transverse deformation of the shaft, N s/m

\(c_{2}\), \(c_{3}\) :

Damping coefficients corresponding to coupling deformation of the shaft, N s

\(c_{4 }\) :

Damping coefficient corresponding to angular deformation of the shaft, N m s

\(c_{5}\), \(c_{6}\) :

Damping coefficients of the supports, N s/m

D :

Monodromy matrix, dimensionless

\(F_{\mathrm{cx}}\), \( F_{\mathrm{cy}}\) :

Oil film forces in the Cartesian coordinate system, N

\(\bar{{F}}_{\mathrm{cx}} ,\bar{{F}}_{\mathrm{cy}} \) :

Dimensionless oil film forces in the Cartesian coordinate system, dimensionless

\(F_{\mathrm{r}}\), \(F_{{\uptau } }\) :

Oil film forces in the polar coordinate system, N

\(\bar{{F}}_{\mathrm{r}} ,\bar{{F}}_{{{\uptau } }} \) :

Dimensionless oil film forces in the polar coordinate system, dimensionless

G :

Vector of harmonic balance terms, dimensionless

J :

Jacobi matrix, dimensionless

\(J_{\mathrm{d}}\) :

Equivalent equatorial moment of inertia of the disk, kg \(\hbox {m}^{2}\)

\(J_{\mathrm{p}}\) :

Equivalent polar moment of inertia of the disk, kg \(\hbox {m}^{2}\)

k, l :

Harmonic parameters, dimensionless

\(k_{\mathrm{rr}}\) :

Stiffness coefficient corresponding to transverse deformation of the shaft, N/m

\(k_{\mathrm{r}{\upvarphi }}\), \(k_{{\upvarphi } \mathrm{r}}\) :

Stiffness coefficients corresponding to coupling deformation of the shaft, N

\(k_{{\upvarphi } {\upvarphi } }\) :

Stiffness coefficient corresponding to angular deformation of the shaft, N m

\(k_{\mathrm{a}}\), \(k_{\mathrm{b}}\) :

Stiffness coefficient of the supports, N/m

l :

Length of the shaft, m

\(l_{1}\) :

Distance from the disk to the left support, m

\(l_{2}\) :

Distance from the disk to the right support, m

\(l_{3}\) :

Distance from the disk to the intershaft bearing, m

L :

Length of squeeze film damper, m

m, n :

Parameters of discrete points in time domain, dimensionless

\(m_{\mathrm{o}}\) :

Equivalent mass of the rotor, kg

\(m_{\mathrm{a}}\) :

Equivalent mass of the left journal, kg

\(m_{\mathrm{b}}\) :

Equivalent mass of the right journal, kg

M :

Maximal harmonic parameter, dimensionless

N :

Number of discrete points in time domain, dimensionless

P :

Vector of harmonic coefficients of dimensionless displacements, dimensionless

\(q_{\mathrm{j}}\) :

Dimensionless displacement (j=1\(\sim \)8), dimensionless

Q :

Vector of harmonic coefficients of dimensionless nonlinear forces, dimensionless

r :

Radial displacement of journal, m

R :

Radius of the journal, m

s :

Dimensionless arc length, dimensionless

t :

Time, s

U :

Vector of state variables, dimensionless

\(U_{1}\), \(U_{2}\), \(U_{3}\) :

Dimensionless unbalance value, dimensionless

x, y :

Displacements of center of disk, m

\(x_{\mathrm{a}}\), \(y_{\mathrm{a}}\) :

Displacements of center of left journal, m

\(x_{\mathrm{b}}\), \(y_{\mathrm{b}}\) :

Displacements of center of right journal, m

\(\alpha _{0}\), \(\alpha _{1}\), \(\alpha _{2}\) :

Dimensionless mass, dimensionless

\(\gamma _{1}\), \(\gamma _{2}\) :

Ratio of distance \( l_{1}\), \(l_{2}\) to length l, dimensionless

\(\delta _{1}\), \(\delta _{2}\) :

Unbalance value, kg m

\(\varepsilon \) :

Dimensionless radial displacement of journal, dimensionless

\(\zeta _{\mathrm{j}}\) :

Dimensionless damping coefficients (j=1\(\sim \)6), dimensionless

\(\eta \) :

Ratio of moment of inertia \(J_{\mathrm{p}}\) to moment of inertia \( J_{\mathrm{d}}\), dimensionless

\(\theta \) :

Journal position angle measured from line of journal centers, dimensionless

\(\theta _{1}\), \(\theta _{2}\) :

Angles from line of journal centers to start and end of positive pressure region, dimensionless

\(\theta _{\mathrm{x}}\), \(\theta _{\mathrm{y}}\) :

Angles of disk rotate along x axis and y axis, dimensionless

\(\kappa _{\mathrm{j}}\) :

Dimensionless stiffness coefficients (j=1\(\sim \)6), dimensionless

\(\lambda \) :

Bifurcation parameter, dimensionless

\(\mu \) :

Viscosity coefficient of oil, N s/m\(^{2}\)

\(\xi \) :

Ratio of high excitation frequency \(\varOmega _{2}\) to low excitation frequency \(\varOmega _{1}\), dimensionless

\(\tau \), \(\tau _{1}\), \(\tau _{2}\) :

Dimensionless time, dimensionless

\(\psi \) :

angular displacement of journal, dimensionless

\(\omega _{1}\), \(\omega _{2}\) :

Dimensionless low excitation frequency and dimensionless high excitation frequency, dimensionless

\(\varOmega _{0}\) :

Reference rotational speed

\(\varOmega _{1}\), \(\varOmega _{2}\) :

Low-pressure rotor rotational speed and high-pressure rotor rotational speed, rad/s

Appendix 2

$$\begin{aligned}&g_{3,k,l} =\left[ {\kappa _1 -\left( {k+l\xi } \right) ^{2}} \right] a_{2kl} +\zeta _1 \left( {k+l\xi } \right) b_{2kl} \nonumber \\&\quad +\,\kappa _2 a_{3kl} +\zeta _2 \left( {k+l\xi } \right) b_{3kl} -\left( {\kappa _2 +\gamma _2 \kappa _1 } \right) a_{6kl} \\&\quad -\left( {\zeta _2 +\gamma _2 \zeta _1 } \right) \left( {k+l\xi } \right) b_{6kl} +\left( {\kappa _2 -\gamma _1 \kappa _1 } \right) a_{8kl} \nonumber \\&\quad +\left( {\zeta _2 -\gamma _1 \zeta _1 } \right) \left( {k+l\xi } \right) b_{8kl} =0 \\&g_{4,k,l} =-\zeta _1 \left( {k+l\xi } \right) a_{2kl} +\left[ {\kappa _1 -\left( {k+l\xi } \right) ^{2}} \right] b_{2kl} \nonumber \\&\quad -\zeta _2 \left( {k+l\xi } \right) a_{3kl} +\kappa _2 b_{3kl} +\left( {\zeta _2 +\gamma _2 \zeta _1 } \right) \left( {k+l\xi } \right) a_{6kl} \\&\quad -\left( {\kappa _2 +\gamma _2 \kappa _1 } \right) b_{6kl} -\left( {\zeta _2 -\gamma _1 \zeta _1 } \right) \left( {k+l\xi } \right) a_{8kl} \nonumber \\&\quad +\left( {\kappa _2 -\gamma _1 \kappa _1 } \right) b_{8kl} -U_1 \phi _1 -\xi ^{2}U_2 \phi _2 =0 \\&g_{5,k,l} =\kappa _3 a_{2kl} +\zeta _3 \left( {k+l\xi } \right) b_{2kl} +\left[ {\kappa _4 -\alpha _0 \left( {k+l\xi } \right) ^{2}} \right] a_{3kl} \nonumber \\&\quad +\zeta _4 \left( {k+l\xi } \right) b_{3kl} +\alpha _0 \eta \left( {k+l\xi } \right) b_{4kl} \\&\quad -\left( {\kappa _4 +\gamma _2 \kappa _3 } \right) a_{6kl} \nonumber \\&\quad -\left( {\zeta _4 +\gamma _2 \zeta _3 } \right) \left( {k+l\xi } \right) b_{6kl} +\left( {\kappa _4 -\gamma _1 \kappa _3 } \right) a_{8kl} \nonumber \\&\quad +\left( {\zeta _4 -\gamma _1 \zeta _3 } \right) \left( {k+l\xi } \right) b_{8kl} =0 \\&g_{6,k,l} =-\zeta _3 \left( {k+l\xi } \right) a_{2kl} +\kappa _3 b_{2kl} -\zeta _4 \left( {k+l\xi } \right) a_{3kl} \nonumber \\&\quad +\left[ {\kappa _4 -\alpha _0 \left( {k+l\xi } \right) ^{2}} \right] b_{3kl} -\alpha _0 \eta \left( {k+l\xi } \right) a_{4kl} \\&\quad +\left( {\zeta _4 +\gamma _2 \zeta _3 } \right) \left( {k+l\xi } \right) a_{6kl} -\left( {\kappa _4 +\gamma _2 \kappa _3 } \right) b_{6kl} \nonumber \\&\quad -\left( {\zeta _4 -\gamma _1 \zeta _3 } \right) \left( {k+l\xi } \right) a_{8kl} +\left( {\kappa _4 -\gamma _1 \kappa _3 } \right) b_{8kl} \nonumber \\&\quad -\xi ^{2}U_3 \phi _2 =0 \\&g_{7,k,l} =-\kappa _3 a_{1kl} -\zeta _3 \left( {k+l\xi } \right) b_{1kl} -\alpha _0 \eta \left( {k+l\xi } \right) b_{3kl}\nonumber \\&\quad +\left[ {\kappa _4 -\left( {k+l\xi } \right) ^{2}} \right] a_{4kl} +\zeta _4 \left( {k+l\xi } \right) b_{4kl} \nonumber \\&\quad +\left( {\kappa _4 +\gamma _2 \kappa _3 } \right) a_{5kl} +\left( {\zeta _4 +\gamma _2 \zeta _3 } \right) \left( {k+l\xi } \right) b_{5kl} \nonumber \\&\quad -\left( {\kappa _4 -\gamma _1 \kappa _3 } \right) a_{7kl} -\left( {\zeta _4 -\gamma _1 \zeta _3 } \right) \left( {k+l\xi } \right) b_{7kl} \nonumber \\&\quad +\xi ^{2}U_3 \phi _2 =0 \\&g_{8,k,l} =\zeta _3 \left( {k+l\xi } \right) a_{1kl} - \kappa _3 b_{1kl} +\alpha _0 \eta \left( {k+l\xi } \right) a_{3kl} \nonumber \\&\quad -\zeta _4 \left( {k+l\xi } \right) a_{4kl} +\left[ {\kappa _4 -\left( {k+l\xi } \right) ^{2}} \right] b_{4kl} \\&\quad -\left( {\zeta _4 +\gamma _2 \zeta _3 } \right) \left( {k+l\xi } \right) a_{5kl} +\left( {\kappa _4 +\gamma _2 \kappa _3 } \right) b_{5kl} \nonumber \\&\quad +\left( {\zeta _4 -\gamma _1 \zeta _3 } \right) \left( {k+l\xi } \right) a_{7kl} -\left( {\kappa _4 -\gamma _1 \kappa _3 } \right) b_{7kl} =0 \nonumber \\&g_{9,k,l} =-\gamma _2 \kappa _1 a_{1kl} -\gamma _2 \zeta _1 \left( {k+l\xi } \right) b_{1kl} +\gamma _2 \kappa _2 a_{4kl} +\gamma _2\zeta _2 \nonumber \\&\quad \left( {k+l\xi } \right) b_{4kl} +\left[ {\left( {\kappa _5 +\gamma _2 \kappa _2 +\gamma _2^2 \kappa _1 } \right) -\alpha _1 \left( {k+l\xi } \right) ^{2}} \right] a_{5kl} \\&\quad +\left[ {\zeta _5 +\gamma _2 \left( {\zeta _2 +\gamma _2 \zeta _1 } \right) } \right] \left( {k+l\xi } \right) b_{5kl} -\gamma _2 \left( {\kappa _2 -\gamma _1 \kappa _1 } \right) \nonumber \\&\quad a_{7kl} -\gamma _2 \left( {\zeta _2 -\gamma _1 \zeta _1 } \right) \left( {k+l\xi } \right) b_{7kl} +Bc_{5kl} =0 \\&g_{10,k,l} =\gamma _2 \zeta _1 \left( {k+l\xi } \right) a_{1kl} -\gamma _2 \kappa _1 b_{1kl} -\gamma _2 \zeta _2 \left( {k+l\xi } \right) a_{4kl} \nonumber \\&\quad +\,\gamma _2 \kappa _2 b_{4kl} -\left[ {\gamma _2 \left( {\zeta _2 +\gamma _2 \zeta _1 } \right) +\zeta _5 } \right] \left( {k+l\xi } \right) a_{5kl} \\&\quad +\,\left[ {\left( {\kappa _5 +\gamma _2 \kappa _2 +\gamma _2^2 \kappa _1 } \right) -\alpha _1 \left( {k+l\xi } \right) ^{2}} \right] b_{5kl} \nonumber \\&\quad -\,\gamma _2 \left( {\kappa _2 -\gamma _1 \kappa _1 } \right) b_{7kl} +\gamma _2 \left( {\zeta _2 -\gamma _1 \zeta _1 } \right) \left( {k+l\xi } \right) a_{7kl} \nonumber \\&\quad +\,Bd_{5kl} =0 \end{aligned}$$
$$\begin{aligned}&g_{11,k,l} =-\gamma _2 \kappa _1 a_{2kl} -\gamma _2 \zeta _1 \left( {k+l\xi } \right) b_{2kl} \nonumber \\&\quad -\gamma _2 \kappa _2 a_{3kl} -\gamma _2 \zeta _2 \left( {k+l\xi } \right) b_{3kl} \nonumber \\&\quad +\left[ {\left( {\kappa _5 +\gamma _2 \kappa _2 +\gamma _2^2 \kappa _1 } \right) -\alpha _1 \left( {k+l\xi } \right) ^{2}} \right] a_{6kl} \\&\quad +\left[ {\zeta _5 +\gamma _2 \left( {\zeta _2 +\gamma _2 \zeta _1 } \right) } \right] \left( {k+l\xi } \right) b_{6kl}\nonumber \\&\quad -\gamma _2 \left( {\kappa _2 -\gamma _1 \kappa _1 } \right) a_{8kl} -\gamma _2 \left( {\zeta _2 -\gamma _1 \zeta _1 } \right) \left( {k+l\xi } \right) b_{8kl} \nonumber \\&\quad +Bc_{6kl} =0 \\&g_{12,k,l} =\gamma _2 \zeta _1 \left( {k+l\xi } \right) a_{2kl} -\gamma _2 \kappa _1 b_{2kl}\nonumber \\&\quad \quad +\,\gamma _2 \zeta _2 \left( {k+l\xi } \right) a_{3kl} \nonumber \\&\quad -\gamma _2 \kappa _2 b_{3kl} -\left[ {\gamma _2 \left( {\zeta _2 +\gamma _2 \zeta _1 } \right) +\zeta _5 } \right] \left( {k+l\xi } \right) a_{6kl} \\&\quad +\left[ {\left( {\kappa _5 +\gamma _2 \kappa _2 +\gamma _2^2 \kappa _1 } \right) -\alpha _1 \left( {k+l\xi } \right) ^{2}} \right] b_{6kl} \nonumber \\&\quad +\gamma _2 \left( {\zeta _2 -\gamma _1 \zeta _1 } \right) \left( {k+l\xi } \right) a_{8kl} -\gamma _2 \left( {\kappa _2 -\gamma _1 \kappa _1 } \right) b_{8kl} \nonumber \\&\quad +Bd_{6kl} =0 \\&g_{13,k,l} =-\gamma _1 \kappa _1 a_{1kl} -\gamma _1 \zeta _1 \left( {k+l\xi } \right) b_{1kl} \\&\quad +\gamma _1 \kappa _2 a_{4kl} +\gamma _1 \zeta _2 \left( {k+l\xi } \right) b_{4kl} +\gamma _1 \left( {\kappa _2 +\gamma _2 \kappa _1 } \right) a_{5kl} \\&\quad +\gamma _1 \left( {\zeta _2 +\gamma _2 \zeta _1 } \right) \left( {k+l\xi } \right) b_{5kl} \\&\quad +\left[ {\left( {\kappa _6 -\gamma _1 \kappa _2 +\gamma _1^2 \kappa _1 } \right) -\alpha _2 \left( {k+l\xi } \right) ^{2}} \right] a_{7kl} \\&\quad +\left[ {\gamma _1 \left( {-\zeta _2 +\gamma _1 \zeta _1 } \right) +\zeta _6 } \right] \left( {k+l\xi } \right) b_{7kl} =0 \\&g_{14,k,l} =\gamma _1 \zeta _1 \left( {k+l\xi } \right) a_{1kl} -\gamma _1 \kappa _1 b_{1kl}\\&\quad \quad -\gamma _1 \zeta _2 \left( {k+l\xi } \right) a_{4kl} \\&\quad +\gamma _1 \kappa _2 b_{4kl} -\gamma _1 \left( {\zeta _2 +\gamma _2 \zeta _1 } \right) \left( {k+l\xi } \right) a_{5kl} \\&\quad +\gamma _1 \left( {\kappa _2 +\gamma _2 \kappa _1 } \right) b_{5kl} \\&\quad +\left[ {\left( {\kappa _6 -\gamma _1 \kappa _2 +\gamma _1^2 \kappa _1 } \right) -\alpha _2 \left( {k+l\xi } \right) ^{2}} \right] b_{7kl}\\&\quad -\left[ {\gamma _1 \left( {-\zeta _2 +\gamma _1 \zeta _1 } \right) +\zeta _6 } \right] \left( {k+l\xi } \right) a_{7kl} =0 \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Hou, L., Chen, Y. et al. Dynamic characteristics of flexible rotor with squeeze film damper excited by two frequencies. Nonlinear Dyn 87, 2463–2481 (2017). https://doi.org/10.1007/s11071-016-3204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3204-4

Keywords

Navigation