Skip to main content
Log in

Implementation of analog circuit and study of chaotic dynamics in a generalized Duffing-type MEMS resonator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the nonlinear dynamics of a system of generalized Duffing-type MEMS resonator in the frame of simple analog electronic circuit. A mathematical model formed for the proposed generalized Duffing-type MEMS oscillator in which nonlinearities arising out of two different sources such as mid-plane stretching and electrostatic force can lead to variety of nonlinear phenomena such as period-doubling route, transient chaos and homo-/heteroclinic oscillations. These phenomena were confirmed through detailed numerical investigations such as phase portraits, bifurcation diagram, Poincaré map, Lyapunov exponent spectrum and finite-time Lyapunov exponent. The analog circuit realization for the Duffing-type MEMS resonator is constructed. The numerically simulated results are confirmed in the laboratory experimental observations which are closely matched with each other. The experimentally observed chaotic attractor confirmed through FFT spectrum, 0–1 test and Poincaré cross section. In addition, the robustness of the signal strength is confirmed through signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer, New York (2013)

    MATH  Google Scholar 

  2. Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion, vol. 38. Springer, New York (2013)

    MATH  Google Scholar 

  3. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  4. Nayfeh, Ali H., Mohammad, I.Y., Abdel Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48(1), 153–163 (2007)

    Article  MATH  Google Scholar 

  5. Tusset, A.M., Balthazar, J.M., Bassinello Jr., D.G., Pontes, B.R., Felix, J.L.P.: Statements on chaos control designs, including a fractional order dynamical system, applied to a MEMS comb-drive actuator. Nonlinear Dyn. 69(4), 1837–1857 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abeysinghe, D.C., Dasgupta, S., Boyd, J.T., Jackson, H.E.: A novel MEMS pressure sensor fabricated on an optical fiber. Photonics Technol. Lett. IEEE 13(9), 993–995 (2001)

    Article  Google Scholar 

  7. Zhu, R., Sun, D., Zhou, Z., Wang, D.: A linear fusion algorithm for attitude determination using low cost MEMS-based sensors. Measurement 40(3), 322–328 (2007)

    Article  Google Scholar 

  8. Judy, J.W.: Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater. Struct. 10(6), 1115 (2001)

    Article  Google Scholar 

  9. Reichenbach, R.B., et al.: RF MEMS oscillator with integrated resistive transduction. Electron Device Lett. IEEE 27(10), 805–807 (2006)

    Article  Google Scholar 

  10. Hajjam, A., Pourkamali, S.: Fabrication and characterization of mems-based resonant organic gas sensors. IEEE J. Sens. 12(6), 1958–1964 (2012)

    Article  Google Scholar 

  11. Zwijze, A.F.: Micro-machined high capacity silicon load cells. Ph.D. thesis, University of Twente, Enschede, The Netherlands

  12. Zhang, W., Baskaran, R., Turner, K.L.: Effect of cubic nonlinearity on auto-parametrically amplified resonant mems mass sensor. Sens. Actuators A: Phys. 102(1), 139–150 (2002)

    Article  Google Scholar 

  13. Requa, M.V., Turner, K.L.: Electromechanically driven and sensed parametric resonance in silicon micro cantilevers. Appl. Phys. Lett. 88(26), 263508 (2006)

    Article  Google Scholar 

  14. Turner, K.L., Miller, S.A., Hartwell, P.G., MacDonald, N.C., Strogatz, S.H., Adams, S.G.: Five parametric resonances in a microelectromechanical system. Nature 396(6707), 149–152 (1998)

    Article  Google Scholar 

  15. Almog, R., Zaitsev, S., Shtempluck, O., Buks, E.: Noise squeezing in a nanomechanical duffing resonator. Phys. Rev. Lett. 98, 078103 (2007)

    Article  Google Scholar 

  16. Aldridge, J., Cleland, A.: Noise-enabled precision measurements of a duffing nanomechanical resonator. Phys. Rev. Lett. 94, 156403 (2005)

    Article  Google Scholar 

  17. Kozinsky, I., Postma, H.C., Kogan, O., Husain, A., Roukes, M.L.: Basins of attraction of a nonlinear nanomechanical resonator. Phys. Rev. Lett. 99, 207201 (2007)

    Article  Google Scholar 

  18. Ishikawa, T., Odohira, T., Nikkuni, M., Koyama, E., Tsumagari, T., Asada, R.: New dpharp ejx series pressure and differential pressure transmitters. Yokogawa Technical Report-English Edition, pp. 9–14 (2004)

  19. Ouakad, H.M., Younis, M.I.: On using the dynamic snap-through motion of mems initially curved microbeams for filtering applications. J. Sound Vib. 333(2), 555–568 (2014)

    Article  Google Scholar 

  20. Haghighi, H.S., Markazi, A.H.: Chaos prediction and control in mems resonators. Commun. Nonlinear Sci. Numer. Simul. 15(10), 3091–3099 (2010)

    Article  Google Scholar 

  21. Kacem, N., Hentz, S., Pinto, D., Reig, B., Nguyen, V.: Nonlinear dynamics of nanomechanical beam resonators: improving the performance of Nems-based sensors. Nanotechnology 20(27), 275501 (2009)

    Article  Google Scholar 

  22. Qiu, J., Lang, J.H., Slocum, A.H., Weber, A.C.: A bulk-micromachined bistable relay with u-shaped thermal actuators. J. Microelectromech. Syst. 14(5), 1099–1109 (2005)

    Article  Google Scholar 

  23. Zook, J., Burns, D., Guckel, H., Sniegowski, J., Engelstad, R., Feng, Z.: Characteristics of polysilicon resonant microbeams. Sens. Actuators A: Phys. 35(1), 51–59 (1992)

    Article  Google Scholar 

  24. Siewe, M.S., Hegazy, U.H.: Homoclinic bifurcation and chaos control in mems resonators. Appl. Math. Model. 35(12), 5533–5552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miandoab, E.M., Yousefi Koma, A., Pishkenari, H.N., Tajaddodianfar, F.: Study of nonlinear dynamics and chaos in mems/nems resonators. Commun. Nonlinear Sci. Numer. Simul. 22(1), 611–622 (2015)

    Article  Google Scholar 

  26. Ouakad, H. M., Younis, M. I., Alsaleem, F. M., Miles, R., Cui, W.: The static and dynamic behavior of mems arches under electrostatic actuation. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp. 607-616. (2009)

  27. Zaitsev, S., Shtempluck, O., Buks, E., Gottlieb, O.: Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 67(1), 859–883 (2012)

    Article  MATH  Google Scholar 

  28. Alsaleem, F.M., Younis, M.I., Ruzziconi, L.: An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. J. Microelectromech. Syst. 19(4), 794–806 (2010)

    Article  Google Scholar 

  29. Younis, M.I., Ouakad, H., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19(3), 647–656 (2010)

    Article  Google Scholar 

  30. Wang, Y.C., Adams, S.G., Thorp, J.S., MacDonald, N.C., Hartwell, P., Bertsch, F.: Chaos in mems, parameter estimation and its potential application. IEEE Trans. Circuits Syst. 1, Fundam Theory Appl. 45(10), 1013–1020 (1998)

    Article  Google Scholar 

  31. Zhang, W.M., Tabata, O., Tsuchiya, T., Meng, G.: Noise-induced chaos in the electrostatically actuated mems resonators. Phys. Lett. A 375(32), 2903–2910 (2011)

    Article  MATH  Google Scholar 

  32. DeMartini, B.E., Butterfield, H.E., Moehlis, J., Turner, K.L.: Chaos for a microelectromechanical oscillator governed by the nonlinear mathieu equation. J. Microelectromech. Syst. 16(6), 1314–1323 (2007)

    Article  Google Scholar 

  33. Park, K., Chen, Q., Lai, Y.-C.: Energy enhancement and chaos control in microelectromechanical systems. Phys. Rev. E 77(2), 026210 (2008)

    Article  Google Scholar 

  34. Lakshmanan, M., Murali, K.: Chaos in Nonlinear Oscillators: Controlling and Synchronization, vol. 13. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  35. Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N., Tajaddodianfar, F.: Study of nonlinear dynamics and chaos in mems/nems resonators. Commun. Nonlinear Sci. Numer. Simul. 22(1), 611–622 (2015)

    Article  Google Scholar 

  36. Tamaseviciute, E., Tamasevicius, A., Mykolaitis, G., Bumeliene, S., Lindberg, E.: Analogue electrical circuit for simulation of the Duffing-Holmes equation. Nonlinear Anal.: Model. Control 13, 241 (2008)

    MATH  Google Scholar 

  37. Frehlich, R.G., Novak, S.: The Duffing oscillator: analog solutions and a comparison with harmonic linearization. Int. J. Nonlinear Mech. 20, 123 (1985)

    Article  Google Scholar 

  38. Luchinsky, D.G., McClintock, P.V., Dykman, M.I.: Analogue studies of nonlinear systems. Rep. Prog. Phys. 61, 889 (1998)

    Article  Google Scholar 

  39. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining lyapunov exponents from a time series. Phys. D: Nonlinear Phenom. 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lai, Y.C., Tél, T.: Transient chaos: complex dynamics on finite time scales, vol. 173. Springer, New York (2011)

    MATH  Google Scholar 

  41. Sabarathinam, S., Thamilmaran, K.: Transient chaos in a globally coupled system of nearly conservative hamiltonian duffing oscillators. Chaos, Solitons Fractals 73, 129–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lakshmanan, M., Murali, K.: Chaos in Nonlinear Oscillators: Controlling and Synchronization, vol. 13. World scientific, Singapore (1996)

    MATH  Google Scholar 

  43. Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 460(2042), 603–611 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gottwald, G.A., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Dana, S.K., Chakraborty, S., Ananthakrishna, G.: Homoclinic bifurcation in Chua’s circuit. Pramana 64(3), 443–454 (2005)

  46. Yagasaki, K.: Periodic and homoclinic motions in forced, coupled oscillators. Nonlinear Dyn. 20(4), 319–359 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Miss. A. Sugasini for her experimental assistance. S.S. acknowledges University Grants Commission (UGC) for the financial assistance through RFSMS scheme. K.T. acknowledges DST, Govt. of India, for the financial support through the Grant No. SB/EMEQ-077/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Thamilmaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabarathinam, S., Thamilmaran, K. Implementation of analog circuit and study of chaotic dynamics in a generalized Duffing-type MEMS resonator. Nonlinear Dyn 87, 2345–2356 (2017). https://doi.org/10.1007/s11071-016-3194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3194-2

Keywords

Navigation