Skip to main content
Log in

Rough external feedback control of microcantilevers in atomic force microscopy

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

External feedback control of microcantilevers was previously demonstrated to be one of promising techniques to develop high-performance noncontact atomic force microscopy, but it has a difficulty in reproducing oscillatory waveforms of fast vibrating microcantilevers. Here we propose an approach to overcome this difficulty by using approximate waveforms for vibrations of the cantilevers, instead of the actual ones, as control signals. The approximations are very simple and consist of the lowest frequency and constant components. We call the proposed technique, rough external feedback control, to distinguish it from the original one. The efficiency and validity of our approach are demonstrated by numerical simulations, and numerical bifurcation analyses are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Binnig, G., Quate, C.F., Gerber, Ch.: Atomic force microscopy. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  2. Binnig, G., Rohrer, H.: In touch with atoms. Rev. Mod. Phys. 71, S324–330 (1999)

    Article  Google Scholar 

  3. García, R., Pérez, R.: Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002)

    Article  Google Scholar 

  4. Giessibl, F.J.: Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)

    Article  Google Scholar 

  5. Lee, S.I., Howell, S.W., Raman, A., Reifenberger, R.: Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: a comparison between theory and experiment. Phys. Rev. B 66, 115409 (2002)

    Article  Google Scholar 

  6. Lee, S.I., Howell, S.W., Raman, A., Reifenberger, R.: Nonlinear dynamic perspectives of dynamic force microscopy. Ultramicroscopy 97, 185–198 (2003)

    Article  Google Scholar 

  7. Ashhab, M., Salapaka, M.V., Dahleh, M., Mezić, I.: Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy. Nonlin. Dynam. 20, 197–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Basso, M., Giarré, L., Dahleh, M., Mezić, I.: Complex dynamics in a harmonically excited Leonard-Jones oscillator: Microcantilevers-sample interaction in scanning probe microscopes. J. Dyn. Syst. Meas. Cont. 122, 240–245 (2000)

    Article  Google Scholar 

  9. Yagasaki, K.: Nonlinear dynamics of vibrating microcantilevers in tapping-mode atomic force microscopy. Phys. Rev. B 70, 245419 (2004)

    Article  Google Scholar 

  10. Yagasaki, K.: Bifurcations and chaos in vibrating microcantilevers of tapping mode atomic force microscopy. Int. J. NonLinear Mech. 42, 658–672 (2007)

    Article  Google Scholar 

  11. Misra, S., Dankowicz, H., Paul, M.R.: Degenerate discontinuity-induced bifurcations in tapping-mode atomic-force microscopy. Physica D 239, 33–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)

    Article  Google Scholar 

  13. Morita, S., Wiesendanger, R., Meyer, E. (eds.): Noncontact Atomic Force Microscopy. Springer, Berlin (2002)

    Google Scholar 

  14. Morita, S., Giessibl, F.J., Wiesendanger, R. (eds.): Noncontact Atomic Force Microscopy, vol. 2. Springer, Berlin (2009)

    Google Scholar 

  15. García, R.: Amplitude Modulation Atomic Force Microscopy. Wiley-VCH, Weinheim (2010)

    Book  Google Scholar 

  16. Yagasaki, K.: New control methodology of microcantilevers in atomic force microscopy. Phys. Lett. A 375, 23–28 (2010)

    Article  MATH  Google Scholar 

  17. Settimi, V., Gottlieb, O., Rega, G.: Asymptotic analysis of a noncontact AFM microcantilever with external feedback control. Nonlinear Dyn. 79, 2675–2698 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yagasaki, K.: Nonlinear dynamics and bifurcations in external feedback control of microcantilevers in atomic force microscopy. Commun. Nonlinear Sci. Numer. Simul. 18, 2926–2943 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schöll, E., Schuster, H.G. (eds.): Handbook of Chaos Control, 2nd edn. Wiley-VCH, New York (2007)

    MATH  Google Scholar 

  20. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    Article  Google Scholar 

  21. Yagasaki, K., Kumagai, M.: External feedback control of chaos using approximate periodic orbits. Phys. Rev. E 65, 026204 (2002)

    Article  Google Scholar 

  22. Doedel, E., Oldeman, B.E.: AUTO-07P: continuation and bifurcation software for ordinary differential equations (2012). http://cmvl.cs.concordia.ca/auto

  23. Rodríguez, T.R., García, R.: Theory of Q control in atomic force microscopy. Appl. Phys. Lett. 82, 4821–4823 (2003)

    Article  Google Scholar 

  24. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  25. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research (C) No. 25400168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Yagasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagasaki, K. Rough external feedback control of microcantilevers in atomic force microscopy. Nonlinear Dyn 87, 2335–2343 (2017). https://doi.org/10.1007/s11071-016-3193-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3193-3

Keywords

Navigation