Abstract
In this paper, via generalized bilinear forms, we consider the (\(2+1\))-dimensional bilinear p-Sawada–Kotera (SK) equation. We derive analytical rational solutions in terms of positive quadratic functions. Through applying the dependent transformation, we present a class of lump solutions of the (\(2+1\))-dimensional SK equation. Those rationally decaying solutions in all space directions exhibit two kinds of characters, i.e., bright lump wave (one peak and two valleys) and bright–dark lump wave (one peak and one valley). In addition, we also obtain three families of bright–dark lump wave solutions to the nonlinear p-SK equation for \(p=3\).
This is a preview of subscription content,
to check access.

Similar content being viewed by others
References
Manakov, S.V., Zakharov, V.E., Bordag, L.A., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys. Lett. A 63, 205–206 (1977)
Krichever, I.M.: Rational solutions of the Kadomtsev-Petviashvili equation and the integrable systems of N particles on a line. Funkc. Anal. Priloz. 12, 76–78 (1978)
Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)
Villarroel, J., Ablowitz, M.J.: On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation. Commun. Math. Phys. 207, 1–42 (1999)
Kaup, D.J.: The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction. J. Math. Phys. 22, 1176–1181 (1981)
Imai, K.: Dromion and lump solutions of the Ishimori-I equation. Prog. Theor. Phys. 98, 1013–1023 (1997)
Müller, P., Garrett, C., Osborne, A.: Rogue waves. Oceanography 18, 66–75 (2005)
Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)
Ma, W.X.: Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015)
Ma, W.X., Qin, Z.Y., Lü, X.: Lump solutions to dimensionally reduced \(p\)-gKP and \(p\)-gBKP equations. Nonlinear Dyn. 84, 923–931 (2016)
Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. arXiv:1607.06983 (2016)
Yang, J.Y., Ma, W.X.: Lump solutions to the BKP equation by symbolic computation. Int. J. Mod. Phys. B 30, 1640028 (2016)
Ma, W.X., Zhou, Y., Dougherty, R.: Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations. Int. J. Mod. Phys. B 30, 1640018 (2016)
Konopelchenko, B.G., Dubrovsky, V.G.: Some new integrable nonlinear evolution equations in 2+1 dimensions. Phys. Lett. A 102, 15 (1984)
Dubrovsky, V.G., Lisitsyn, Y.V.: The construction of exact solutions of two-dimensional integrable generalizations of Kaup-Kuperschmidt and Sawada-Kotera equations via \(\partial \)-dressing method. Phys. Lett. A 295, 198 (2002)
Lü, X., Tian, B., Sun, K., Wang, P.: Bell-polynomial manipulations on the Bäcklund transformations and Lax pairs for some soliton equations with one Tau-function. J. Math. Phys. 51, 113506 (2010)
Lü, X.: New bilinear Bäcklund transformation with multisoliton solutions for the (2+1)-dimensional Sawada-Kotera model. Nonlinear Dyn. 76, 161–168 (2014)
Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)
Wazwaz, A.M.: Multiple soliton solutions for (2+1)-dimensional Sawada-Kotera and Caudrey-Dodd-Gibbon equations. Math. Method Appl. Sci. 34, 1580–1586 (2011)
Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)
Ma, W.X.: Generalized bilinear differential equations. Stud. Nonlinear Sci. 2, 140 (2011)
Gilson, C., Lambert, F., Nimmo, J., Willox, R.: On the combinatorics of the Hirota D-operators. Proc. R. Soc. Lond. Ser. A 452, 223–234 (1996)
Ma, W.X.: Bilinear equations, Bell polynomials and linear superposition principle. J. Phys. Conf. Ser. 411, 012021 (2013)
Acknowledgements
This work was supported by the Shanghai Leading Academic Discipline Project under Grant No. XTKX2012, by the Technology Research and Development Program of University of Shanghai for Science and Technology, by Hujiang Foundation of China under Grant No. B14005 and by the National Natural Science Foundation of China under Grant No. 11201302. The second author was supported in part by the National Natural Science Foundation of China under Grant Nos. 11371326, 11371323, 11271008 and 11371086, Natural Science Foundation of Shanghai under Grant No. 11ZR1414100, Zhejiang Innovation Project of China under Grant No. T200905, the First-class Discipline of Universities in Shanghai and the Shanghai University Leading Academic Discipline Project (No. A13-0101-12-004) and the Distinguished Professorships of Shanghai University of Electric Power and Shanghai Second Polytechnic University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, HQ., Ma, WX. Lump solutions to the (\(\mathbf 2+1 \))-dimensional Sawada–Kotera equation. Nonlinear Dyn 87, 2305–2310 (2017). https://doi.org/10.1007/s11071-016-3190-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-016-3190-6