Skip to main content
Log in

FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper introduces two novel fractional-order chaotic systems with cubic nonlinear resistor and investigates its adaptive sliding mode synchronization. Firstly the novel two equilibrium chaotic system with cubic nonlinear resistor (NCCNR) is derived and its dynamic properties are investigated. The fractional-order cubic nonlinear resistor system (FONCCNR) is then derived from the integer-order model and its stability and fractional-order bifurcation are discussed. Next a novel no-equilibrium chaotic cubic nonlinear resistor system (NECNR) is derived from NCCNR system. Dynamic properties of NECNR system are investigated. The fractional-order no equilibrium cubic nonlinear resistor system (FONECNR) is derived from NECNR. Stability and fractional-order bifurcation are investigated for the FONECNR system. The non-identical adaptive sliding mode synchronization of FONCCNR and FONECNR systems are achieved. Finally the proposed systems, adaptive control laws, sliding surfaces and adaptive controllers are implemented in FPGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Geisel, T.: Chaos, randomness and dimension. Nature 298, 322–323 (1982)

    Article  Google Scholar 

  2. Chaudhuri, J.R.: Chaos and information entropy production. J. Phys. A 33, 8331–8350 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lorentz, E.N.: Deterministic non periodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  5. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, C.X., Liu, T., Liu, L., Liu, K.: A new chaotic attractor. Chaos Solitons Fractals 22, 1031–1038 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sundarapandian, V., Pehlivan, I.: Analysis, control, synchronization and circuit design of a novel chaotic system. Math. Comput. Model. 55, 1904–1915 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sundarapandian, V.: Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. J. Eng. Sci. Technol. Rev. 6, 45–52 (2013)

    Google Scholar 

  9. Pham, V.T., Volos, C., Jafari, S., Wei, Z., Wang, X.: Constructing a novel no-equilibrium chaotic system. Int. J. Bifurc. Chaos 24, 1450073 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books, Boston (1994)

    MATH  Google Scholar 

  11. Sprott, J.C.: Elegant Chaos Algebraically Simple Chaotic Flows. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  12. Jafari, A.S., Sprott, J.C.: Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57, 79–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pham, V.-T., Jafari, S., Volos, C., Giakoumis, A., Vaidyanathan, S., Kapitaniak, T.: A chaotic system with equilibria located on the rounded square loop and its circuit implementation. IEEE Trans. Circuits Syst. II Express Briefs 63(9) (2016)

  14. Kingni, S.T., Jafari, S., Pham, V.-T., Kol, G.R., Woafo, P.: Three-dimensional chaotic autonomous system with a circular equilibrium: analysis circuit implementation and its fractional-order form. Circuits Syst. Signal Process. 35, 1933–1948 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gotthans, T., Petržela, J.: New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 81(3), 1143–1149 (2015)

    Article  MathSciNet  Google Scholar 

  16. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50(2), R647 (1994)

    Article  MathSciNet  Google Scholar 

  17. Shilnikov, L., Shilnikov, A., Turaev, D., Chua, L.: Methods of Qualitative Theory in Nonlinear Dynamics. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  18. Shilnikov, L.P.: A case of the existence of a countable number of periodic motions. Sov. Math. Docklady 6, 163–166 (1965)

    Google Scholar 

  19. Leonov, G., Kuznetsov, N., Seldedzhi, S., Vagaitsev, V.: Hidden oscillations in dynamical systems. Trans. Syst. Contr. 6, 54–67 (2011)

    Google Scholar 

  20. Leonov, G., Kuznetsov, N.: Hidden attractors in dynamical systems: from hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23, 1330002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Leonov, G., Kuznetsov, N., Vagaitsev, V.: Hidden attractor in smooth Chua system. Phys. D 241, 1482–1486 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  23. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  24. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Biolek, Z., Biolek, D., Biolková, V.: Spice model of memristor with nonlinear Dopant drift. Radio Eng. 18(2), 210–214 (2009)

    Google Scholar 

  26. Pino, R.E., Campbell, K.A.: Compact method for modeling and simulation of memristor devices. In: Proceeding of international Symposium on Nanoscale Architecture, pp. 1–4 (2010)

  27. Rak, Cserey, G.: Macromodelling of the memristor in SPICE. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 632–636 (2010)

    Article  Google Scholar 

  28. Ishaq Ahamed, A., Lakshmanan, M.: Nonsmooth bifurcations, transient hyperchaos and hyper-chaotic beats in a memristive Murali–Lakshmanan–Chua circuit. Int. J. Bifurc. Chaos 23 (2013)

  29. Wang, S., Wang, X., Zhou, Y., Han, B.: A memristor-based hyperchaotic complex Lü system and its adaptive complex generalized synchronization. Entropy 18, 58 (2016). doi:10.3390/e18020058

    Article  Google Scholar 

  30. Pham, V.-T., Volos, C., Gambuzza, L.V.: A memristive hyperchaotic system without equilibrium. Sci. World J. (2014). doi:10.1155/2014/368986

  31. Aghababa, M.P.: Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory. J. Comput. Nonlinear Dyn. 7, 21–31 (2012)

    Google Scholar 

  32. Boroujeni, E.A., Momeni, H.R.: Nonfragile nonlinear fractional order observer design for a class of nonlinear fractional order systems. Signal Process. 92, 2365–2370 (2012)

    Article  Google Scholar 

  33. Zhang, R., Gong, J.: Synchronization of the fractional-order chaotic system via adaptive observer. Syst. Sci. Control Eng. 2(1), 751–754 (2014)

    Article  Google Scholar 

  34. Petras, I.: Methos for simulation of the fractional order chaotic systems. Acta montanastica Slovaca 11(4), 273–277 (2006)

    Google Scholar 

  35. Trzaska Zdzislaw, W.: Matlab Solutions of chaotic fractional order circuits. Intech Open www.intechopen.com/download/pdf/21404 (2013)

  36. Li, R.H., Chen, W.S.: Fractional order systems without equilibria. Chin. Phys. B 22, 040503 (2013)

    Article  Google Scholar 

  37. Danca, M.-F., Tang, W.K.S., Chen, G.: Suppressing chaos in a simplest autonomous memristor-based circuit of fractional order by periodic impulses. Chaos Solitons Fractals 84, 31–40 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Idowu, B.A., Vincent, U.E., Njah, A.N.: Synchronization of chaos in non-identical parametrically excited systems. Chaos Solitons Fractals 39, 2322–2331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vaidyanathan, S., Rajagopal, K.: Hybrid synchronization of hyperchaotic Wang–Chen and hyperchaotic Lorenz systems by active non-linear control. Int. J. Signal Syst. Control Eng. Appl. 4, 55–61 (2011)

    Google Scholar 

  40. Sundarapandian, V., Karthikeyan, R.: Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control. Eur. J. Sci. Res. 64, 94–106 (2011)

    Google Scholar 

  41. Sundarapandian, V., Karthikeyan, R.: Adaptive anti synchronization of Uncertain Tigan and Li Systems. J. Eng. Appl. Sci. 7, 45–52 (2012)

    Article  MATH  Google Scholar 

  42. Majidabad, S.S., Shandiz, H.T.: Discrete-time terminal sliding mode control of chaotic Lorenz system. J. Control Syst. Eng. 1(1), 1–8 (2013)

    Article  Google Scholar 

  43. Njah, N.: Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear Dyn. 61(1–2), 1–9 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Onma, O.S., Olusola, O. I., Njah, A. N.: Control and synchronization of chaotic and hyperchaotic lorenz systems via extended backstepping techniques. J. Nonlinear Dyn. Article ID 861727. doi:10.1155/2014/861727 (2014)

  45. Wang, B., Li, Y., Zhu, D.L.: Simplified sliding mode of a novel class of four-dimensional fractional-order chaos. Int. J. Control Autom. 8(8), 425–438 (2015)

    Article  Google Scholar 

  46. Yin, C., Dadras, S., Zhong, S., Chen, Y.Q.: Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach. Appl. Math. Model. 37(4), 2469–2483 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu, H., Yang, J.: Sliding-mode synchronization control for uncertain fractional-order chaotic systems with time delay. Entropy 17, 4202–4214 (2015). doi:10.3390/e17064202

    Article  Google Scholar 

  48. Di-Yi, C., Run-Fan, Z., Xiao-Yi, M., Juan, W.: Synchronization between a novel class of fractional-order and integer-order chaotic systems via a sliding mode controller. Chin. Phys. B 21(12) (2012)

  49. Tlelo-Cuautle, E., Pano-Azucena, A.D., Rangel-Magdaleno, J.J.: Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs. Nonlinear Dyn. 85(4), 2143–2157 (2016)

    Article  Google Scholar 

  50. Wang, Q., Yu, S., Li, C.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I Regul. Papers 63(3), 401–412 (2016)

    Article  MathSciNet  Google Scholar 

  51. Dong, E., Liang, Z., Du, S.: Topological horseshoe analysis on a four-wing chaotic attractor and its FPGA implementation. Nonlinear Dyn. 83(1–2), 623–630 (2016)

    Article  Google Scholar 

  52. Tlelo-Cuautle, E., Carbajal-Gomez, V.H., Obeso-Rodelo, P.J.: FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dyn. 82(4), 1879–1892 (2015)

    Article  MathSciNet  Google Scholar 

  53. Rashtchi, V., Nourazar, M.: FPGA Implementation of a real-time weak signal detector using a duffing oscillator. Circuits Syst. Signal Process. 34(10), 3101–3119 (2015)

    Article  Google Scholar 

  54. Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, : FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27(1–3), 66–80 (2015)

    Article  MathSciNet  Google Scholar 

  55. Ya-Ming, X., Li-Dan, W., Shu-Kai, D.: A memristor-based chaotic system and its field programmable gate array implementation. Acta Phys. Sin. 65(12) (2016)

  56. Vaidhyanathan, S., Volos, C.: Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Arch. Control Sci. 25(LXI)(3), 333–353 (2015)

    MathSciNet  Google Scholar 

  57. Muñoz-Pacheco, J.M., Gómez-Pavón, L.D.C., Félix-Beltrán, O.G., Luis-Ramos, A.: Determining the Lyapunov spectrum of continuous-time 1D and 2D multiscroll chaotic oscillators via the solution of m-PWL variational equations. Abstr. Appl. Anal. (2013). doi:10.1155/2013/851970

    MathSciNet  Google Scholar 

  58. Bao, B., Jiang, P., Wu, H., Hu, F.: Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn. 79, 2333–2343 (2015)

    Article  MathSciNet  Google Scholar 

  59. Pezeshki, C.: Bispectral analysis of systems possessing chaotic motions. J. Sound Vib. 137(3), 357–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  60. Herrmann, R.: Fractional Calculus: An Introduction for Physicists, 2nd edn. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  61. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore (2014)

    MATH  Google Scholar 

  62. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  63. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  64. Rajagopal, K., Vaidhyanathan, S., Karthikeyan, A., Duraisamy, P.: Dynamic analysis and Chaos suppression in a Fractional order Brushless DC motor. Electr. Eng. (2016) (in press)

  65. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New York (2002)

    MATH  Google Scholar 

  66. Jiang, C.X., Carletta, J.E., Hartley, T.T.: Implementation of fractional-order operators on field programmable gate arrays. In: Theoretical Developments and Applications in Physics and Engineering, Advances in Fractional Calculus, pp 333–346 (2007)

  67. Charef, A.: Analogue realization of fractional-order integrator, differentiator and fractional PI\(\lambda \)D \(\mu \) controller. IEEE Proc. Control Theory Appl. 153, 714–720 (2006)

    Article  Google Scholar 

  68. Chen, Y.Q., et al.: Continued fraction expansion approach to discretizing fractional order derivatives—an expository review. Nonlinear Dyn. 38, 155–170 (2004)

    Article  MATH  Google Scholar 

  69. Wang, Q., Yu, S., Li, C., Lu, J., Fang, X., Guyeux, C., Bahi, J.M.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I Regul. Papers 63, 3 (2016)

    Article  MathSciNet  Google Scholar 

  70. Jiang, X.: A systematic approach for digital hardware realization of Fractional-order 0perators and systems (Doctoral dissertation). Retrieved from Ohiolink database accession number: 1386649994 (2013)

  71. Tlelo-Cuautle, E., Rangel-Magdaleno, J., de la Fraga, L.G.: Engineering Applications of FPGAs–Chaotic Systems, Artificial Neural Networks, Random Number Generators, and Secure Communication Systems. Springer, Berlin (2016). doi:10.1007/978-3-319-34115-6

    Google Scholar 

  72. Chunni, W., Runtong, C., Jun, M.: Controlling a chaotic resonator by means of dynamic track control. Complexity 21(1), 370–378 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan Rajagopal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopal, K., Karthikeyan, A. & Srinivasan, A.K. FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn 87, 2281–2304 (2017). https://doi.org/10.1007/s11071-016-3189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3189-z

Keywords

Navigation