Skip to main content
Log in

Resistant to noise chaotic communication scheme exploiting the regime of generalized synchronization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We develop a chaotic communication system exploiting the regime of generalized synchronization between the transmitter and receiver. Two variants of communication scheme are considered. The first of them contains only one self-oscillating response system in the receiver, which is driven in turn by the signal from the drive system and delayed copy of this signal. In the second variant of the scheme, the receiver is composed of two response systems, but these systems could be nonidentical in contrast to the classical communication schemes based on the generalized synchronization. The efficiency of the proposed scheme is shown for the case, where the transmitter and receiver are constructed using time-delayed feedback oscillators. The communication scheme is studied numerically and realized in the physical experiment. It is shown that the proposed scheme possesses high tolerance to noise in the communication channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kocarev, L., Halle, K.S., Eckert, K., Chua, L.O., Parlitz, U.: Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bifurc. Chaos 2, 709–713 (1992)

    Article  MATH  Google Scholar 

  2. Parlitz, U., Chua, L.O., Kocarev, L., Halle, K.S., Shang, A.: Transmission of digital signals by chaotic synchronization. Int. J. Bifurc. Chaos 2, 973–977 (1992)

    Article  MATH  Google Scholar 

  3. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 65–68 (1993)

    Article  Google Scholar 

  4. Halle, K.S., Wu, C.W., Itoh, M., Chua, L.O.: Spread spectrum communication through modulation of chaos. Int. J. Bifurc. Chaos 3, 469–477 (1993)

    Article  MATH  Google Scholar 

  5. Dmitriev, A.S., Panas, A.I., Starkov, S.O.: Experiments on speech and music signals transmission using chaos. Int. J. Bifurc. Chaos 5, 1249–1254 (1995)

    Article  MATH  Google Scholar 

  6. Udaltsov, V.S., Goedgebuer, J.-P., Larger, L., Rhodes, W.T.: Communicating with optical hyperchaos: information encryption and decryption in delayed nonlinear feedback systems. Phys. Rev. Lett. 86, 1892–1895 (2001)

    Article  Google Scholar 

  7. Dmitriev, A.S., Panas, A.I.: Dynamical Chaos: New Information Carriers for Communication Systems. Fizmatlit, Moscow (2002)

    Google Scholar 

  8. Tao, Y.: A survey of chaotic secure communication systems. Int. J. Comput. Cogn. 2, 81–130 (2004)

    Google Scholar 

  9. Argyris, A., Syvridis, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., García-Ojalvo, J., Mirasso, C.R., Pesquera, L., Shore, K.A.: Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 437, 343–346 (2005)

    Article  Google Scholar 

  10. Prokhorov, M.D., Ponomarenko, V.I.: Encryption and decryption of information in chaotic communication systems governed by delay-differential equations. Chaos Solitons Fractals 35, 871–877 (2008)

    Article  MATH  Google Scholar 

  11. Koronovskii, A.A., Moskalenko, O.I., Hramov, A.E.: On the use of chaotic synchronization for secure communication. Phys. Uspekhi 52, 1213–1238 (2009)

    Article  Google Scholar 

  12. Trejo-Guerra, R., Tlelo-Cuautle, E., Cruz-Hernández, C., Sánchez-López, C.: Chaotic communication system using Chua’s oscillators realized with CCII\(+\) s. Int. J. Bifurc. Chaos 19, 4217–4226 (2009)

    Article  Google Scholar 

  13. Gámez-Guzmán, L., Cruz-Hernández, C., López-Gutiérrez, R.M., García-Guerrero, E.E.: Synchronization of Chua’s circuits with multi-scroll attractors: application to communication. Commun. Nonlinear Sci. Numer. Simul. 14, 2765–2775 (2009)

    Article  Google Scholar 

  14. Wang, M.-J., Wang, X.-Y., Pei, B.-N.: A new digital communication scheme based on chaotic modulation. Nonlinear Dyn. 67, 1097–1104 (2012)

    Article  MathSciNet  Google Scholar 

  15. Mengue, A.D., Essimbi, B.Z.: Secure communication using chaotic synchronization in mutually coupled semiconductor lasers. Nonlinear Dyn. 70, 1241–1253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ponomarenko, V.I., Prokhorov, M.D., Karavaev, A.S., Kulminskiy, D.D.: An experimental digital communication scheme based on chaotic time-delay system. Nonlinear Dyn. 74, 1013–1020 (2013)

    Article  MathSciNet  Google Scholar 

  17. Deng, T., Xia, G.Q., Wu, Z.M.: Broadband chaos synchronization and communication based on mutually coupled VCSELs subject to a bandwidth-enhanced chaotic signal injection. Nonlinear Dyn. 76, 399–407 (2014)

    Article  Google Scholar 

  18. Karavaev, A.S., Kulminskiy, D.D., Ponomarenko, V.I., Prokhorov, M.D.: An experimental communication scheme based on chaotic time-delay system with switched delay. Int. J. Bifurc. Chaos 25, 1550134 (2015)

    Article  MathSciNet  Google Scholar 

  19. Garza-González, E., Posadas-Castillo, C., Rodríguez-Liñan, A., Cruz-Hernández, C.: Chaotic synchronization of irregular complex network with hysteretic circuit-like oscillators in hamiltonian form and its application in private communications. Rev. Mex. Fis. E 62, 51–59 (2016)

    MathSciNet  Google Scholar 

  20. Moskalenko, O.I., Koronovskii, A.A., Hramov, A.E.: Generalized synchronization of chaos for secure communication: remarkable stability to noise. Phys. Lett. A 374, 2925–2931 (2010)

    Article  MATH  Google Scholar 

  21. Moskalenko, O.I., Hramov, A.E., Koronovskii, A.A., Ovchinnikov, A.A.: Effect of noise on generalized synchronization of chaos: theory and experiment. Eur. Phys. J. B 82, 69–82 (2011)

    Article  Google Scholar 

  22. Kocarev, L., Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76, 1816–1819 (1996)

    Article  Google Scholar 

  23. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980–994 (1995)

    Article  Google Scholar 

  24. Pyragas, K.: Weak and strong synchronization of chaos. Phys. Rev. E 54, R4508–R4511 (1996)

    Article  Google Scholar 

  25. Abarbanel, H.D.I., Rulkov, N.F., Sushchik, M.M.: Generalized synchronization of chaos: the auxiliary system approach. Phys. Rev. E 53, 4528–4535 (1996)

    Article  Google Scholar 

  26. Paluš, M., Komárek, V., Hrnčíř, Z., Štěrbová, K.: Synchronization as adjustment of information rates: detection from bivariate time series. Phys. Rev. E 63, 046211 (2001)

    Article  Google Scholar 

  27. Liu, Z., Zhou, J., Munakata, T.: Detecting generalized synchronization by the generalized angle. Europhys. Lett. 87, 50002 (2009)

    Article  Google Scholar 

  28. Koronovskii, A.A., Moskalenko, O.I., Hramov, A.E.: Nearest neighbors, phase tubes, and generalized synchronization. Phys. Rev. E 84, 037201 (2011)

    Article  Google Scholar 

  29. Schumacher, J., Haslinger, R., Pipa, G.: Statistical modeling approach for detecting generalized synchronization. Phys. Rev. E 85, 056215 (2012)

    Article  Google Scholar 

  30. Stankovski, T., McClintock, P.V.E., Stefanovska, A.: Dynamical inference: where phase synchronization and generalized synchronization meet. Phys. Rev. E 89, 062909 (2014)

    Article  Google Scholar 

  31. Martínez-Guerra, R., Mata-Machuca, J.L.: Fractional generalized synchronization in a class of nonlinear fractional order systems. Nonlinear Dyn. 77, 1237–1244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Oliver, N., Jiingling, T., Fischer, I.: Consistency properties of a chaotic semiconductor laser driven by optical feedback. Phys. Rev. Lett. 114, 123902 (2015)

    Article  Google Scholar 

  33. Voss, H.U.: Anticipating chaotic synchronization. Phys. Rev. E 61, 5115–5119 (2000)

    Article  Google Scholar 

  34. Zhan, M., Wang, X., Gong, X., Wei, G.W., Lai, C.H.: Complete synchronization and generalized synchronization of one-way coupled time-delay systems. Phys. Rev. E 68, 036208 (2003)

    Article  Google Scholar 

  35. Sahaverdiev, E.M., Shore, K.A.: Generalized synchronization in time-delayed systems. Phys. Rev. E 71, 016201 (2005)

    Article  Google Scholar 

  36. Senthilkumar, D.V., Lakshmanan, M.: Transition from anticipatory to lag synchronization via complete synchronization in time-delay systems. Phys. Rev. E 71, 016211 (2005)

    Article  Google Scholar 

  37. Srinivasan, K., Senthilkumar, D.V., Murali, K., Lakshmanan, M., Kurths, J.: Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity. Chaos 21, 023119 (2011)

    Article  MATH  Google Scholar 

  38. Banerjee, T., Biswas, D., Sarkar, B.C.: Complete and generalized synchronization of chaos and hyperchaos in a coupled first-order time-delayed system. Nonlinear Dyn. 71, 279–290 (2013)

    Article  MathSciNet  Google Scholar 

  39. Ma, J., Wang, C.-N., Jin, W.-Y., Wu, Y.: Transition from spiral wave to target wave and other coherent structures in the networks of Hodgkin–Huxley neurons. Appl. Math. Comput. 217, 3844–3852 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Tang, J., Ma, J., Yi, M., Xia, H., Yang, X.: Delay and diversity-induced synchronization transitions in a small-world neuronal network. Phys. Rev. E 83, 046207 (2011)

    Article  Google Scholar 

  41. Shi, X., Wang, Z.: Adaptive synchronization of time delay Hindmarsh–Rose neuron system via self-feedback. Nonlinear Dyn. 69, 2147–2153 (2012)

    Article  MathSciNet  Google Scholar 

  42. Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)

    Article  Google Scholar 

  43. Hettiarachchi, I.T., Lakshmanan, S., Bhatti, A., Lim, C.P., Prakash, M., Balasubramaniam, P., Nahavandi, S.: Chaotic synchronization of time-delay coupled Hindmarsh–Rose neurons via nonlinear control. Nonlinear Dyn. 86, 1249–1262 (2016)

    Article  MATH  Google Scholar 

  44. Koronovskii, A.A., Moskalenko, O.I., Pavlov, A.S., Frolov, N.S., Hramov, A.E.: Generalized synchronization in the action of a chaotic signal on a periodic system. Tech. Phys. 59, 629–636 (2014)

    Article  Google Scholar 

  45. Pérez, G., Cerdeira, H.A.: Extracting messages masked by chaos. Phys. Rev. Lett. 74, 1970–1973 (1995)

    Article  Google Scholar 

  46. Zhou, C.-S., Chen, T.-L.: Extracting information masked by chaos and contaminated with noise: some considerations on the security of communication approaches using chaos. Phys. Lett. A 234, 429–435 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Muñoz-Pacheco, J.M., Zambrano-Serrano, E., Félix-Beltrán, O., Gómez-Pavón, L.C., Luis-Ramos, A.: Synchronization of PWL function-based 2D and 3D multi-scroll chaotic systems. Nonlinear Dyn. 70, 1633–1643 (2012)

    Article  MathSciNet  Google Scholar 

  48. Jiménez-López, E., González Salas, J.S., Ontañón-García, L.J., Campos-Cantón, E., Pisarchik, A.N.: Generalized multistable structure via chaotic synchronization and preservation of scrolls. J. Frankl. Inst. 350, 2853–2866 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: An universal phenomenon in mutually coupled Chua’s circuit family. J. Circuit Syst. Comput. 23, 1450028 (2014)

    Article  Google Scholar 

  50. Soriano-Sánchez, A.G., Posadas-Castillo, C., Platas-Garza, M.A., Cruz-Hernández, C., López-Gutiérrez, R.M.: Coupling strength computation for chaotic synchronization of complex networks with multi-scroll attractors. Appl. Math. Comput. 275, 305–316 (2016)

    MathSciNet  Google Scholar 

  51. Tlelo-Cuautle, E., Muñoz-Pacheco, J.M.: Simulation of Chua’s circuit by automatic control of step-size. Appl. Math. Comput. 190, 1526–1533 (2007)

    MATH  Google Scholar 

  52. Tlelo-Cuautle, E., Carbajal-Gomez, V.H., Obeso-Rodelo, P.J., Rangel-Magdaleno, J.J., Nunez-Perez, J.C.: FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dyn. 82, 1879–1892 (2015)

    Article  MathSciNet  Google Scholar 

  53. Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, A.D., Obeso-Rodelo, P.J., Nunez-Perez, J.C.: FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. 27, 66–80 (2015)

    Article  MathSciNet  Google Scholar 

  54. Trejo-Guerra, R., Tlelo-Cuautle, E., Jiménez-Fuentes, M., Muñoz-Pacheco, J.M., Sánchez-López, C.: Multiscroll floating gate—based integrated chaotic oscillator. Int. J. Circuit Theory Appl. 41, 831–843 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Russian Science Foundation, Grant No. 14–12–00324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Prokhorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorov, M.D., Ponomarenko, V.I., Kulminskiy, D.D. et al. Resistant to noise chaotic communication scheme exploiting the regime of generalized synchronization. Nonlinear Dyn 87, 2039–2050 (2017). https://doi.org/10.1007/s11071-016-3174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3174-6

Keywords

Navigation