Nonlinear Dynamics

, Volume 87, Issue 3, pp 2001–2010 | Cite as

Coexistence of hidden chaotic attractors in a novel no-equilibrium system

  • Viet-Thanh Pham
  • Christos Volos
  • Sajad Jafari
  • Tomasz Kapitaniak
Original Paper


Hidden attractors have received considerable interest in physics, mechanics and other dynamical areas recently. This paper introduces a novel autonomous system with hidden attractor. In particular, there exists no-equilibrium point in this system. Although the new system is simple with six terms, it exhibits complex behavior such as chaos and multistability. In addition, the offset boosting of a variable is achieved by adding a single controlled constant. Dynamical properties of the no-equilibrium system have been discovered by using nonlinear dynamical tools as well as an electronic implementation.


Chaos Equilibrium Hidden attractor Offset variable Electronic circuit 



The authors thank Prof. GuanRong Chen, Department of Electronic Engineering, City University of Hong Kong, for suggesting helpful references. This work has been supported by the Polish National Science Centre, MAESTRO Programme—Project No 2013/08/A/ST8/00/780.


  1. 1.
    Leonov, G.A., Kuznetsov, N.V., Kuznetsova, O.A., Seledzhi, S.M., Vagaitsev, V.I.: Hidden oscillations in dynamical systems. Trans. Syst. Control 6, 54–67 (2011)Google Scholar
  2. 2.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bragin, V.O., Vagaitsev, V.I., Kuznetsov, N.V., Leonov, G.A.: Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits. J. Comput. Syst. Sci. Int. 50, 511–543 (2011)CrossRefMATHGoogle Scholar
  4. 4.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Phys. D 241, 1482–1486 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillation in Hilbert–Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurcat. Chaos 23, 1330002 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kapitaniak, T., Leonov, G.A.: Multistability: uncovering hidden attractors. Eur. Phys. J. Spec. Top. 224, 1405–1408 (2005)CrossRefGoogle Scholar
  7. 7.
    Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N., Leonov, G., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Jafari, S., Sportt, J.C., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 224, 1469–1476 (2015)CrossRefGoogle Scholar
  9. 9.
    Brezetskyi, S., Dudkowski, D., Kapitaniak, T.: Rare and hidden attractors in Van der Pol-Duffing oscillators. Eur. Phys. J. Spec. Top. 224, 1459–1467 (2015)CrossRefGoogle Scholar
  10. 10.
    Leonov, G.A., Kuznetsov, N.V., Kiseleva, M.A., Solovyeva, E.P., Zaretskiy, A.M.: Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 77, 277–288 (2014)CrossRefGoogle Scholar
  11. 11.
    Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224, 1421–1458 (2015)CrossRefGoogle Scholar
  12. 12.
    Zhusubaliyev, Z.T., Mosekilde, E.: Multistability and hidden attractors in a multilevel DC/DC converter. Math. Comput. Simul. 109, 32–45 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Llibre, J.: Centers: their integrability and relations with the divergence. Appl. Math. Nonlinear Sci. 1, 79–86 (2016)CrossRefGoogle Scholar
  14. 14.
    Li, Q., Zeng, H., Yang, X.-S.: On the hidden twin attractors and bifurcation in the Chua’s circuit. Nonlinear Dyn. 77, 255–266 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wei, Z., Yu, P., Zhang, W.: Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system. Nonlinear Dyn. 82, 131–141 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Wang, Z., Sun, W., Wei, Z., Zhang, S.: Dynamics and delayed feedback control for a 3D jerk system with hidden attractor. Nonlinear Dyn. 82, 577–588 (2015)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Wei, Z., Yang, Q.: Dynamical analysis of a new autonomous 3-D system only with stable equilibria. Nonlinear Anal. Real World Appl. 12, 106–118 (2011)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Molaie, M., Jafari, S., Sprott, J.C., Golpayegani, S.: Simple chaotic flows with one stable equilibrium. Int. J. Bifurcat. Chaos 23, 1350188 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Wei, Z.: Dynamical behaviors of chaotic systems with no equilibria. Phys. Lett. A 376, 102–108 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Jafari, S., Sprott, J.C., Golpayegani, S.: Elementary chaotic flows with no equilibria. Phys. Lett. A 377, 699–702 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hens, C., Dana, S.K., Feudel, U.: Extreme multistability: attractors manipulation and robustness. Chaos 25, 053112 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Li, C., Sprott, J.C.: Finding coexisting attractors using amplitude control. Nonlinear Dyn. 78, 2059–2064 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Leipnik, R.B., Newton, T.A.: Double strange attractors in rigid body motion with linear feedback control. Phys. Lett. A 86, 63–87 (1981)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Masoller, C.: Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Phys. Rev. A 50, 2569–2578 (1994)CrossRefGoogle Scholar
  25. 25.
    Vaithianathan, V., Veijun, J.: Coexistence of four different attractors in a fundamental power system model. IEEE Trans. Circuits Syst. I(46), 405–409 (1999)Google Scholar
  26. 26.
    Upadhyay, R.K.: Multiple attractors and crisis route to chaos in a model of food-chain. Chaos Solitons Fractals 16, 737–747 (2003)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Cushing, J.M., Henson, S.M., Blackburn, C.C.: Multiple mixed attractors in a competition model. J. Biol. Dyn. 1, 347–362 (2007)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Massoudi, A., Mahjani, M.G., Jafarian, M.: Multiple attractors in Koper–Gaspard model of electrochemical. J. Electroanal. Chem. 647, 74–86 (2010)CrossRefGoogle Scholar
  29. 29.
    Pivka, L., Wu, C.W., Huang, A.: Chua’s oscillator: a compendium of chaotic phenomena. J. Franklin Inst. 331, 705–741 (1994)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kengne, J., Chedjou, J.C., Fonzin Fozin, T., Kyamakya, K., Kenne, G.: On the analysis of semiconductor diode based chaotic and hyperchaotic chaotic generators—a case study. Nonlinear Dyn. 77, 373–386 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kengne, J.: Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. Int. J. Bifurcat. Chaos 25, 1550052 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zeng, Z., Zheng, W.: Multistability of neural networks with time-varying delays and concave-convex characteristic. IEEE Trans. Neural Netw. Learn. Syst. 23, 293–305 (2012)CrossRefGoogle Scholar
  33. 33.
    Zeng, Z., Huang, T., Zheng, W.: Multistability of recurrent networks with time-varying delays and the piecewise linear activation function. IEEE Trans. Neural Netw. 21, 1371–7 (2010)CrossRefGoogle Scholar
  34. 34.
    Chudzik, A., Perlikowski, P., Stefanski, A., Kapitaniak, T.: Multistability and rare attractors in van der Pol-Duffing oscillator. Int. J. Bifurcat. Chaos 21, 1907–1912 (2011)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Sprott, J.C., Wang, X., Chen, G.R.: Coexistence of point, periodic and strange attractors. Int. J. Bifurcat. Chaos 23, 1350093 (2013)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurcat. Chaos 24, 1450034 (2014)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Dudkowski, D., Prasad, A., Kapitaniak, T.: Perpetual points and hidden attractors in dynamical systems. Phys. Lett. A 379, 2591–2596 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Prasad, A.: Existence of perpetual points in nonlinear dynamical systems and its applications. Int. J. Bifurcat. Chaos 25, 1530005 (2015)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Kuznetsov, A.P., Kuznetsov, S.P., Mosekilde, E., Stankevich, N.V.: Co-existing hidden attractors in a radio-physical oscillator. J. Phys. A Math. Theor. 48, 125101 (2015)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50, R647 (1994)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Jafari, S., Sprott, J.C.: Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57, 79–84 (2013)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Li, C., Sprott, J.C., Yuan, Z., Li, H.: Constructing chaotic systems with total amplitude control. Int. J. Bifurcat. Chaos 25, 1530025 (2015)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Munmuangsaen, B., Sprott, J.C., Thio, W.J.-C., Buscarino, A., Fortuna, L.: A simple chaotic flow with a continuously adjustable attractor dimension. Int. J. Bifurcat. Chaos 25, 1530036 (2015)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Kengne, J., Chedjou, J.C., Kom, M., Kyamakya, K., Kamdoum Tamba, V.: Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies. Nonlinear Dyn. 76, 1119–1132 (2014)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Kengne, J., Njitacke, Z.T., Fotsin, H.B.: Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 77, 373–386 (2014)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Ott, E.: Chaos Dyn. Syst. Cambridge University Press, Cambridge (1992)Google Scholar
  47. 47.
    Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A chaotic circuit based on Hewlett-Packard memristor. Chaos 22, 023136 (2012)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Lü, J., Chen, G.: Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurcat. Chaos 16, 775–858 (2006)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Wang, L.: 3-scroll and 4-scroll chaotic attractors generated form a new 3-D quadratic autonomous system. Nonlinear Dyn. 56, 453–462 (2009)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Buscarino, A., Fortuna, L., Frasca, M., Sciuto, G.: Design of time-delay chaotic electronic circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1888–1896 (2011)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Banerjee, T., Biswas, D., Sarkar, B.C.: Design and analysis of a first order time-delayed chaotic system. Nonlinear Dyn. 70, 721–734 (2012)Google Scholar
  52. 52.
    Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: A chaotic path planning generator for autonomous mobile robots. Rob. Auton. Syst. 60, 651–656 (2012)CrossRefGoogle Scholar
  53. 53.
    Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: Image encryption process based on chaotic synchronization phenomena. Signal Process. 93, 1328–1390 (2013)CrossRefGoogle Scholar
  54. 54.
    Khan, M., Shah, T., Gondal, M.A.: An efficient technique for the construction of substitution box with chaotic partial diffirential equation. Nonlinear Dyn. 73, 1795–1801 (2013)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Ma, J., Wu, X.Y., Qin, H.X.: Realization of synchronization between hyperchaotic systems by using a scheme of intermittent linear coupling. Acta Phys. Sin. 62, 170502 (2013)Google Scholar
  56. 56.
    Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76, 1951–1962 (2014)CrossRefGoogle Scholar
  57. 57.
    Liu, G., Yang, W., Liu, W., Dai, Y.: Designing S-boxes based on -D four-wing autonomous chaotic system. Nonlinear Dyn. 82, 1867–1877 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Viet-Thanh Pham
    • 1
    • 2
  • Christos Volos
    • 3
  • Sajad Jafari
    • 4
  • Tomasz Kapitaniak
    • 2
  1. 1.School of Electronics and TelecommunicationsHanoi University of Science and TechnologyHanoiVietnam
  2. 2.Division of DynamicsLodz University of TechnologyLodzPoland
  3. 3.Department of PhysicsAristotle University of ThessalonikiThessaloníkiGreece
  4. 4.Biomedical Engineering DepartmentAmirkabir University of TechnologyTehranIran

Personalised recommendations