Skip to main content
Log in

Nonlinear feedback coupling in Hindmarsh–Rose neurons

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We analyse the model of neurons described by Hindmarsh–Rose (H–R) system with various coupling schemes. We have examined the scope of synchronization, anti-phase synchronization and amplitude death for linear indirect synaptic coupling of the H–R neurons. The work is extended to coupling of the form nonlinear cubic feedback. The coupling between two neurons using memristor is also examined. A memristor is now identified as the fourth fundamental circuit element which can be considered as an electrical synapse. Mutual coupling of H–R systems using cubic flux-controlled memristor exhibits the properties of bursting and amplitude death. With unidirectional coupling one neuron exhibits tonic spiking or bursting while the other neuron shows amplitude death. Mutual coupling with quadratic flux-controlled memristor model shows the possibilities of synchronization, oscillation death and other interesting dynamics like near-death rare spikes. Exponential flux-controlled memristor coupling in H–R neuron presents synchronization and oscillation death. We have examined the stability of different coupled systems and the Lyapunov exponent plots. It is shown that among different memristor couplings in H–R neurons, cubic flux-controlled memristor has got highest Lyapunov exponent. The present work summarizes the simulation results of different coupling schemes in H–R neurons which show many interesting dynamical characteristics of coupled neuron cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Thornburg, K.S., Moller Jr., M., Roy, R., Carr, T.W., Li, R.D., Erneux, T.: Chaos and coherence in coupled lasers. Phys. Rev. E 55, 38–3865 (1997)

    Article  Google Scholar 

  2. Kiss, I.Z., Gaspar, V., Hudson, J.L.: Experiments on synchronization and control of chaos on coupled electrochemical oscillators. J. Phys. Chem. B 104(31), 7554–7560 (2000)

    Article  Google Scholar 

  3. Harrison, M.A., Lai, Y.C., Holt, R.D.: Dynamical mechanism for coexistence of dispersing species without trade-offs in spatially extended ecological systems. Phys. Rev. E 63(051905), 519051–519055 (2001)

    Google Scholar 

  4. Glass, L.: Synchronization and rhythmic processes in physiology. Nature 410(6825), 277–284 (2001)

    Article  Google Scholar 

  5. Prasad, A., Dhamala, M., Adhikari, B.M., Ramaswamy, R.: Amplitude death in nonlinear oscillators with nonlinear coupling. Phys. Rev. E 81, 027201 (2010)

    Article  Google Scholar 

  6. Koseska, A., Volkov, E., Kurths, J.: Oscillation quenching mechanisms: amplitude vs. oscillation death. Phys. Rep. 531, 173–199 (2013)

    Article  MathSciNet  Google Scholar 

  7. Ahn, S., Rubchinsky, L.L.: Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms. Chaos 23, 1–7 (2013)

    Article  MathSciNet  Google Scholar 

  8. Arumugam, E.M.E., Spano, M.L.: A chimeric path to neuronal synchronization. Chaos Interdiscip. J. nonlinear Sci. 25, 013107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Resmi, V., Ambika, G., Amritkar, R.E.: General mechanism for amplitude death in coupled systems. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84, 046212 (2011)

  10. Sharma, A., Sharma, P.R., Shrimali, M.D.: Amplitude death in nonlinear oscillators with indirect coupling. Phys. Lett. Sect. A Gen. Atom. Solid State Phys. 376, 1562–1566 (2012)

    MATH  Google Scholar 

  11. Saha, D.C.: On the synchronization of synaptically coupled nonlinear oscillators: theory and experiment. Annu. Rev. Chaos Theory Bifurc. Dyn. Syst. 6, 1–29 (2016)

    Google Scholar 

  12. Koch, A.J., et al.: Biological pattern formation: from basic mechanisms to complex structures. Rev. Mod. Phys. 66, 1481–1507 (1994)

    Article  Google Scholar 

  13. Arbib, M.A.: Handbook of Brain Theory and Neural Network. MIT Press, Cambridge (2002)

    Google Scholar 

  14. Zou, W., Senthilkumar, D.V., Nagao, R., Kiss, I.Z., Tang, Y., Koseska, A., Duan, J., Kurths, J.: Restoration of rhythmicity in diffusively coupled dynamical networks. Nat. Commun. 6, 7709 (2015)

    Article  Google Scholar 

  15. Yu, H., Peng, J.: Chaotic synchronization and control in nonlinear-coupled Hindmarsh-Rose neural systems. Chaos Solitons Fractals 29, 342–348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N., Tlelo-Cuautle, E., Vaidyanathan, S.: Memristor: a new concept in synchronization of coupled neuromorphic circuits. J. Eng. Sci. Technol. Rev. 8, 157–173 (2015)

    Google Scholar 

  17. Matthews, P.C., Mirollo, R.E., Strogatz, S.H.: Complex time-delay systems: theory and applications. Phys. D 52 (1991)

  18. Prasad, A.: Time-varying interaction leads to amplitude death in coupled nonlinear oscillators. Pramana J. Phys. 81, 407–415 (2013)

    Article  Google Scholar 

  19. Suresh, K., Sabarathinam, S., Thamilmaran, K., Kurths, J., Dana, S.K.: A common lag scenario in quenching of oscillation in coupled oscillators. Chaos Interdiscip. J. Nonlinear Sci. 26, 083104 (2016)

    Article  MathSciNet  Google Scholar 

  20. Hens, C.R., Olusola, O.I., Pal, P., Dana, S.K.: Oscillation death in diffusively coupled oscillators by local repulsive link. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 88, 034902 (2013)

  21. Wang, C., He, Y., Ma, J., Huang, L.: Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems. Complexity 20, 64–73 (2014)

    Article  MathSciNet  Google Scholar 

  22. Ma, J., Song, X., Jin, W., Wang, C.: Autapse-induced synchronization in a coupled neuronal network. Chaos Solitons Fractals 80, 31–38 (2015)

    Article  MathSciNet  Google Scholar 

  23. Song, X., Wang, C., Ma, J., Tang, J.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58, 1007–1014 (2015)

    Article  Google Scholar 

  24. Ma, J., Tang, J.: A review for dynamics of collective behaviours of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)

    Article  Google Scholar 

  25. Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)

    Article  Google Scholar 

  26. Song, Y., Wen, S.: Synchronization control of stochastic memristor-based neural networks with mixed delays. Neurocomputing 156, 121–128 (2015)

    Article  Google Scholar 

  27. Berdan, R., Vasilaki, E., Khiat, A., Indiveri, G., Serb, A., Prodromakis, T.: Emulating short-term synaptic dynamics with memristive devices. Sci. Rep. 6, 18639 (2016)

    Article  Google Scholar 

  28. Merrikh-Bayat, F., Bagheri-Shouraki, S.: Efficient neuro-fuzzy system and its memristor crossbar-based hardware implementation. 34 (2011). https://arxiv.orgabs/1103.1156

  29. Wei, W., Min, Z.: Chaotic dynamics and its analysis of Hindmarsh-Rose neurons by Shil’nikov approach. Chin. Phys. B 24(8), 1–6 (2015)

    Article  Google Scholar 

  30. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Phisiol. (Lond.) 117, 500–544 (1952)

    Article  Google Scholar 

  31. Fitzhugh, R.: Mathematical models for excitation and propagation in nerve. Biological Engineering, vol. 5, pp. 1–85. Mc Graw (1969)

  32. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  Google Scholar 

  33. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. Biol. 221, 87–102 (1984)

    Article  Google Scholar 

  34. Alias, L.A., Pai, M.S., George, M.M.V.: Near death experiences (NDE) of cardiac arrest survivors-a phenomenological study. Mater. Methods 3, 216–220 (2015)

    Google Scholar 

  35. Zeren, T., Özbek, M., Kutlu, N., Akilli, M.: Significance of using a nonlinear analysis technique, the Lyapunov exponent, on the understanding of the dynamics of the cardiorespiratory system in rats. Turk. J. Med. Sci. 46, 159–165 (2016)

    Article  Google Scholar 

  36. Terman, D., Kopell, N., Bose, A.: Dynamics of two mutually coupled slow inhibitory neurons. Phys. D Nonlinear Phenom. 117, 241–275 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fang, X.: Chaotic synchronization of Hindmarsh–Rose neurons coupled by cubic nonlinear feedback. In: Advances in Cognitive Neurodynamics ICCN 2007, pp. 315–320 (2007)

  38. Chua, L.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  39. Mazumder, P.: Memristors: devices, models and application. Proc. IEEE 100(6), 1911–1919 (2012)

    Article  Google Scholar 

  40. Stockwell, R.: English words: history and structure. Cambridge Univ Press, Cambridge (2001)

    Book  Google Scholar 

  41. Corinto, F.: Memristor synaptic dynamics’ influence on synchronous behaviour of two Hindmarsh–Rose neurons. In: 2011 International Joint Conference on Neural Networks (IJCNN), pp. 2403–2408. IEEE (2011)

  42. Johnson, R.C.: Missing link’memristor created. EE Times. 04 (2008)

  43. Abdurahman, A., Jiang, H., Teng, Z.: Finite-time synchronization for memristor-based neural networks with time-varying delays. Neural Netw. 69, 20–28 (2015)

    Article  Google Scholar 

  44. Wang, H.T., Chen, Y.: Firing dynamics of an autaptic neuron. Chin. Phys. B 24(12) (2015). doi:10.1088/1674-1056/24/12/128709

  45. Guo, Q.: Properties of quadratic flux-controlled and charge-controlled memristor. Adv. Eng. Res. 2352–5401 (2015). doi:10.2991/ameii.15.2015.269

  46. Lee, U., Borjigin, J.: Surge of neurophysiological coherence and connectivity in the dying brain. PNAS 110(35), 144432–144437 (2013)

    Article  Google Scholar 

  47. Klotz, I.: Brain waves surge moments before death. Chin. Phys. B 24(8), 118401 (2009)

    Google Scholar 

  48. Yong, E.: In: Dying brains, signs of heightened consciousness. PNAS (2013)

  49. Wei, L.: Exponential flux-controlled memristor model and its floating emulator. Chin. Phys. B 24(11) (2015)

  50. Friston, K.J.: Book review: brain function, nonlinear coupling, and neuronal transients. Neuroscientist 7, 406–418 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the referees for their constructive comments and suggestions. The authors would like to acknowledge the valuable suggestions from Mineeja K.K., Physics Department, St. Teresa’s College, Ernakulam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunsu Kurian Thottil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thottil, S.K., Ignatius, R.P. Nonlinear feedback coupling in Hindmarsh–Rose neurons. Nonlinear Dyn 87, 1879–1899 (2017). https://doi.org/10.1007/s11071-016-3160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3160-z

Keywords

Navigation