Skip to main content
Log in

Applicability of the permutation largest slope entropy to strange nonchaotic attractors

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We extend the permutation largest slope entropy (PLSE) to the detection of strange nonchaotic attractors (SNA). The initial time series derived from a quasi-periodically forced chaotic map is first transformed into a series of symbols using the order relation. These symbols are thereafter combined into m-length words to obtain quantized ordinal matrices (QOM). Finally, the PLSE is applied to the series of QOM for detecting changes in the behavior of the system. Simulation results show that the QOM transform allows to control the complexity of the time series, hence to reduce the entropy of tori and SNA and to increase that of chaotic motions. This result allows to highlight transitions between the three types of motions, thus showing a nonzero entropy for SNA which nevertheless is smaller than that of chaotic dynamics. The approach is effective for the detection of different routes to SNA from time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, New York (1996)

    Book  MATH  Google Scholar 

  2. Afsar, O., Bagei, G.B., Tirnakli, U.: Renormalized entropy for one dimensional discrete map: periodic and quasi-periodic route to chaos and their robustness. Eur. Phys. J. B 86, 307–320 (2013)

    Article  Google Scholar 

  3. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174,102 (2002)

    Article  Google Scholar 

  4. Barnett, W., Serletis, A.: Martingales, nonlinearity and chaos, journal of economic. Dyn. Control 24, 703–724 (2000)

    Article  MATH  Google Scholar 

  5. Chaudhury, S., Smith, A., Anderson, B., Ghose, S., Jessen, P.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130141 (1963)

    Google Scholar 

  6. Chaudhury, S., Smith, A., Anderson, B., Ghose, S., Jessen, P.: Quantum signatures of chaos in a kicked top. Nature 461, 768771 (2009)

    Article  Google Scholar 

  7. Choe, G.: Computational Ergodic Theory. Springer, Berlin (2005)

    MATH  Google Scholar 

  8. Ding, M., Grebogi, C., Ott, E., Sauer, T., Yorke, J.A.: Estimating correlation dimension from a chaotic time series: when does it ocur? Phys. Rev. Lett. 70, 3872 (1993)

    Article  Google Scholar 

  9. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos. Rev. Mod. Phys. 57, 617 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fouda, J.S.A.E., Koepf, W.: Efficient detection of the quasi-periodic route to chaos by the three-state test. Nonlinear Dyn. 78, 1477–1487 (2014)

    Article  MathSciNet  Google Scholar 

  11. Fouda, J.S.A.E., Koepf, W.: Detecting regular dynamics from time series using permutations slopes. Commun. Nonlinear Sci. Numer. Simul. 27, 216–227 (2015)

    Article  MathSciNet  Google Scholar 

  12. Fouda, J.S.A.E., Effa, J.Y., Kom, M., Ali, M.: The three-state test for chaos detection in discrete maps. Appl. Soft Comput. 13, 4731–4737 (2013)

    Article  Google Scholar 

  13. Fouda, J.S.A.E., Bodo, B., Djeufa, G.M.D., Sabat, S.L.: Experimental chaos detection in the duffing oscillator. Commun. Nonlinear Sci. Numer. Simul. 33, 259269 (2016)

    MathSciNet  Google Scholar 

  14. Gao, J.B., Hu, J., Tung, W.W., Cao, Y.H.: Distinguishing chaos from noise by scale-dependent lyapunov exponent. Phys. Rev. E 74, 066,204 (2006)

  15. Glas, L.: Introduction to controversial topics in nonlinear science: Is the normal heart rate chaotic? Chaos 19, 0285,014 (2009)

    MathSciNet  Google Scholar 

  16. Gopal, R., Venkatesan, A., Lakshmanan, M.: Applicability of the 0–1 test for strange nonchaotic attractors. Chaos 23, 023,123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gottwald, G.A., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8, 129145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346349 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grassberger, P., Procaccia, I.: Estimation of the kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983)

    Article  Google Scholar 

  20. Heagy, J.F., Hammel, H.: The birth of strange nonchaotic attractors. Phys. D 70, 140–153 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lindner, J.F., Kohar, V., Kia, B., Hippke, M., Learned, J.G., Ditto, W.L.: Strange nonchaotic stars. Phys. Rev. Lett. 114, 054,101 (2015)

    Article  Google Scholar 

  22. Negi, S.S., Prasad, A., Ramaswamy, R.: Bifurcations and transitions in the quasiperiodically driven logistic map. Phys. D 145, 1–12 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nishikawa, T., Kaneko, K.: Fractalization of a torus as a strange nonchaotic attractor. Phys. Rev. E 54, 6114–6124 (1996)

    Article  Google Scholar 

  24. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88, 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Prassad, A., Mehra, V., Ramaswamy, R.: Intermittency route to strange nonchaotic attractors. Phys. Rev. Lett. 79, 4127–4130 (1997)

    Article  Google Scholar 

  26. Regev, O.: Chaos and Complexity in Astrophysics. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  27. Richman, J., Moorman, J.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Phys. Heart C. 278, H2039–H2049 (2000)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Armand Eyebe Fouda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyebe Fouda, J.S.A. Applicability of the permutation largest slope entropy to strange nonchaotic attractors. Nonlinear Dyn 87, 1859–1871 (2017). https://doi.org/10.1007/s11071-016-3158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3158-6

Keywords

Navigation