Skip to main content
Log in

TDGL and mKdV equations for car-following model considering traffic jerk and velocity difference

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

By introducing optimal velocity car-following model by Bando et al., we present an improved car-following model which is based on an optimal velocity model considering traffic jerk and full velocity difference. The nature of the model is researched by using linear and nonlinear analysis method. The analytical method and numerical simulation results show that the proposed model can describe the phase transition and critical phenomenon with the thermodynamic theory. In order to describe the traffic flow near the critical point, the time-dependent Ginzburg–Landau (TDGL) equation and the modified Korteweg–de Vries (mKdV) equation are derived. Additionally, the connection between the TDGL and the mKdV equation is also given. Theoretical analysis is demonstrated by numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tang, T.Q., Huang, H.J., Zhao, S.G., Shang, H.Y.: A new dynamic model for heterogeneous traffic flow. Phys. Lett. A 373, 2461–2466 (2009)

    Article  MATH  Google Scholar 

  2. Ge, H.X., Zheng, P.J., Lo, S.M., Cheng, R.J.: TDGL equation in lattice hydrodynamic model considering driver’s physical delay. Nonlinear Dyn. 76, 441–445 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tang, T.Q., Li, C.Y., Wu, Y.H., Huang, H.J.: Impact of the honk effect on the stability of traffic flow. Phys. A 390, 3362–3368 (2011)

    Article  Google Scholar 

  4. Peng, G.H., Song, W., Peng, Y.J., Wang, S.H.: A novel macro model of traffic flow with the consideration of anticipation optimal velocity. Phys. A 398, 76–82 (2014)

    Article  MathSciNet  Google Scholar 

  5. Tang, T.Q., He, J., Wu, Y.H., Caccetta, L.: Propagating properties of traffic flow on a ring road without ramp. Phys. A 396, 164–172 (2014)

    Article  Google Scholar 

  6. Moussa, N., Daoudia, A.K.: Numerical study of two classes of cellular automaton models for traffic flow on a two-lane roadway. Eur. Phys. B 31, 413–420 (2003)

    Article  Google Scholar 

  7. Tang, C.F., Jiang, R., Wu, Q.S., Wiwatanapataphee, B., Wu, Y.H.: Mixed traffic flow in anisotropic continuum model. Transp. Res. Rec. 1999, 13–22 (2007)

    Article  Google Scholar 

  8. Sun, D.H., Zhang, M., Chuan, T.: Multiple optimal current difference effect in the lattice traffic flow model. Mod. Phys. Lett. B 28, 1450091 (2014)

    Article  MathSciNet  Google Scholar 

  9. Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58, 133–138 (1998)

    Article  Google Scholar 

  10. Zhu, H.B., Dai, S.Q.: Numerical simulation of soliton and kink density waves in traffic flow with periodic boundaries. Phys. A 387, 16–17 (2008)

    Google Scholar 

  11. Li, Z.P., Gong, X.B., Liu, Y.C.: An improved car-following model for multiphase vehicular traffic flow and numerical tests. Commun. Theor. Phys. 46, 367–73 (2006)

    Article  Google Scholar 

  12. Jiang, R., Hu, M.B., Zhang, H.M., Gao, Z.Y., Jia, B., Wu, Q.S., Wang, B., Yang, M.: Traffic experiment reveals the nature of car-following. PLoS One 9, 4 (2014)

    Google Scholar 

  13. Jiang, R., Hu, M.B., Zhang, H.M., Gao, Z.Y., Jia, B., Wu, Q.S.: On some experimental features of car-following behavior and how to model them. Transp. Rese. Part. B 80, 338–354 (2015)

    Article  Google Scholar 

  14. Tang, T.Q., Li, P., Yang, X.B.: An extended macro model for traffic flow with consideration of multi static bottlenecks. Phys. A 392, 3537–3545 (2013)

    Article  MathSciNet  Google Scholar 

  15. Zhu, W.X., Zhang, L.D.: Analysis of car-following model with cascade compensation strategy. Phys. A 449, 265–274 (2016)

    Article  MathSciNet  Google Scholar 

  16. Helbing, D.: Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models. Phys. J. B 69, 539–548 (2009)

    Google Scholar 

  17. Xue, Y.: Analysis of the stability and density waves for traffic flow. Chin. Phys. 11, 1128–1134 (2002)

    Article  Google Scholar 

  18. Peng, G.H., Cai, X.H., Liu, C.Q., Cao, B.F., Tuo, M.X.: Optimal velocity difference model for a car-following theory. Phys. Lett. A 375, 3973–3977 (2011)

    Article  MATH  Google Scholar 

  19. Peng, G.H., Cai, X.H., Cao, B.F., Liu, C.Q.: A new lattice model of traffic flow with the consideration of the traffic interruption probability. Phys. A 391, 656–663 (2012)

    Article  Google Scholar 

  20. Li, Y.F., Sun, D.H., Liu, W.N., Zhang, M., Zhao, M., Liao, X.Y., Tang, L.: Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference. Nonlinear Dyn. 66, 15–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ye, J.J., Li, K.P., Jin, X.M.: Simulating train movement in an urban railway based on an improved car-following model. Chin. Phys. B 22, 120206 (2013)

    Article  Google Scholar 

  22. Tang, T.Q., Huang, H.J., Gao, Z.Y., Wong, S.C.: Interactions of waves in the speed-gradient traffic flow model. Phys. A 380, 481–489 (2007)

    Article  Google Scholar 

  23. Tang, T.Q., Wu, Y.H., Caccetta, L., Huang, H.J.: A new car-following model with consideration of roadside memorial. Phys. Lett. A 375, 3845–3850 (2011)

    Article  MATH  Google Scholar 

  24. Ge, H.X., Dai, S.Q., Xue, Y., Dong, L.Y.: Stabilization analysis and modified Korteweg–de Vries equation in a cooperative driving system. Phys. Rev. E 71, 066119 (2005)

    Article  MathSciNet  Google Scholar 

  25. Qian, Y.S., Shao, X.M., Zeng, J.W., Wang, M.: An improved cellular automaton model with the consideration of a multi-point tollbooth. Phys. A 392, 5874–5878 (2013)

    Article  Google Scholar 

  26. Li, L., Wang, F., Jiang, R., Hu, J.M., Ji, Y.: A new car-following model yielding log-normal type headways distributions. Phys. B 19, 020513 (2010)

    Google Scholar 

  27. Nagatani, T.: TDGL and mKdV equation for jamming transition in the lattice models of traffic. Phys. A 264, 581–592 (1999)

    Article  Google Scholar 

  28. Nagatani, T.: Thermodynamic theory for the jamming transition in traffic flow. Phys. Rev. E 58, 4271–4276 (1998)

    Article  Google Scholar 

  29. Nagatani, T.: Jamming transition in the lattice models of traffic. Phys. Rev. E 59, 4857–4864 (1999)

    Article  Google Scholar 

  30. Peng, G.H., Cai, X.H., Liu, C.Q., Tuo, M.X.: A new lattice model of traffic flow with the anticipation effect of potential lane changing. Phys. Lett. A 376, 447–451 (2012)

    Article  MATH  Google Scholar 

  31. Ge, H.X., Cheng, R.J., Lo, S.M.: Time-dependent Ginzburglandau equation for lattice hydrodynamic model describing pedestrian flow. Chin. Phys. B 22, 070507 (2013)

    Article  Google Scholar 

  32. Li, Z.P., Liu, F.Q., Sun, J.: A lattice traffic model with consideration of preceding mixture traffic information. Chin. Phys. B 20, 088901 (2011)

    Article  Google Scholar 

  33. Lv, F., Zhu, H.B., Ge, H.X.: TDGL and mKdV equations for car-following model considering driver’s anticipation. Nonlinear Dyn. 77, 1245–1250 (2014)

    Article  MathSciNet  Google Scholar 

  34. Nagatani, T.: Modified KdV equation for jamming transition in the continuum models of traffic. Phys. A 261, 599–607 (1998)

    Article  MathSciNet  Google Scholar 

  35. Zhou, J., Shi, Z.K.: A new lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of pedestrian’s anticipation effect. Nonlinear Dyn. 81, 1247–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tian, H.H., Hu, H.D., Wei, Y.F., Xue, Y., Lu, W.Z.: Lattice hydrodynamic model with bidirectional pedestrian flow. Phys. A 388, 2895–2902 (2009)

    Article  MathSciNet  Google Scholar 

  37. Bando, M., Haseba, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

  38. Helbing, D., Tilch, B.: Generalized force model of traffic dynamic. Phys. Rev. E 58, 133–138 (1998)

    Article  Google Scholar 

  39. Jiang, R., Wu, Q.S., Zhu, Z.J.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101 (2001)

    Article  Google Scholar 

  40. Ge, H.X., Cheng, R.J., Li, Z.P.: Two velocity difference model for a car following theory. Phys. A 387, 5239–5245 (2008)

    Article  Google Scholar 

  41. Peng, G.H.: A study of wide moving jams in a new lattice model of traffic flow with the consideration of the driver anticipation effect and numerical simulation. Phys. A 391, 5971–5977 (2012)

    Article  Google Scholar 

  42. Yang, S.C., Li, M., Tang, T.Q.: An electric vehicle’s battery life model under car-following model. Measurement 46, 4226–4231 (2013)

    Article  Google Scholar 

  43. Tang, T.Q., Shi, W.F., Yang, X.B., Wang, Y.P., Lu, G.Q.: A macro traffic flow model accounting for road capacity and reliability analysis. Phys. A 392, 6300–6306 (2013)

    Article  MathSciNet  Google Scholar 

  44. Liu, F.X., Cheng, R.J., Zheng, P.J., Ge, H.X.: TDGL and mKdV equations for car-following model considering traffic jerk. Nonlinear Dyn. 83, 793–800 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11372166), the Scientific Research Fund of Zhejiang Provincial, China (Grant Nos. LY15A020007, LY15E080013), the Natural Science Foundation of Ningbo (Grant Nos. 2014A610028, 2014A610022) and the K. C. Wong Magna Fund in Ningbo University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongjun Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Ge, H., Chen, F. et al. TDGL and mKdV equations for car-following model considering traffic jerk and velocity difference. Nonlinear Dyn 87, 1809–1817 (2017). https://doi.org/10.1007/s11071-016-3154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3154-x

Keywords

Navigation