Advertisement

Nonlinear Dynamics

, Volume 87, Issue 3, pp 1731–1747 | Cite as

Composite nonlinear feedback control technique for master/slave synchronization of nonlinear systems

  • Saleh MobayenEmail author
  • Fairouz Tchier
Original Paper

Abstract

In this paper, we propose a design approach of composite nonlinear feedback control technique for the synchronization of master/slave nonlinear systems with time-varying delays, Lipschitz nonlinear functions and parametric uncertainties. Based on the Lyapunov–Krasovskii stabilization theory and linear matrix inequalities, a new sufficient condition is generated for the synchronization of chaotic systems with nonlinearities and perturbations on the master and slave systems. By using the Barbalat’s lemma, the proposed control method guarantees that the states of the master and slave systems are synchronized with an asymptotic convergence rate. Simulation results are demonstrated on two forms of Chua’s chaotic system, which illustrate that the suggested design technique yields satisfactory transient performance.

Keywords

Synchronization Composite nonlinear feedback Linear matrix inequalities Master/slave systems Performance improvement 

Notes

Acknowledgments

This research project was supported by a grant from the “Research Center of the Center for Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University.

References

  1. 1.
    Pai, M.C.: Chaotic sliding mode controllers for uncertain time-delay chaotic systems with input nonlinearity. Appl. Math. Comput. 271, 757–767 (2015)MathSciNetGoogle Scholar
  2. 2.
    Mobayen, S.: Design of LMI-based global sliding mode controller for uncertain nonlinear systems with application to Genesio’s chaotic system. Complexity 21(1), 94–98 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Mobayen, S.: An LMI-based robust controller design using global nonlinear sliding surfaces and application to chaotic systems. Nonlinear Dyn. 79(2), 1075–1084 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gao, L., Wang, Z., Zhou, K., Zhu, W., Wu, Z., Ma, T.: Modified sliding mode synchronization of typical three-dimensional fractional-order chaotic systems. Neurocomputing 166, 53–58 (2015)CrossRefGoogle Scholar
  5. 5.
    Mobayen, S., Baleanu, D., Tchier, F.: Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems. J. Vib. Control (2016). doi: 10.1177/1077546315623887 Google Scholar
  6. 6.
    Mobayen, S., Tchier, F.: An LMI approach to adaptive robust tracker design for uncertain nonlinear systems with time-delays and input nonlinearities. Nonlinear Dyn. 85, 1965–1978 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Mobayen, S.: Finite-time stabilization of a class of chaotic systems with matched and unmatched uncertainties: An LMI approach. Complexity 21(5), 14–19 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Asheghan, M.M., Beheshti, M.T.H.: An LMI approach to robust synchronization of a class of chaotic systems with gain variations. Chaos Solitons Fractals 42(2), 1106–1111 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hou, Y.Y., Liao, T.L., Yan, J.J.: \(\text{ H }_{8}\) synchronization of chaotic systems using output feedback control design. Phys. A. 379, 81–89 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mobayen, S., Tchier, F.: Design of an adaptive chattering avoidance global sliding mode tracker for uncertain non-linear time-varying systems. Trans. Inst. Meas. Control (2016). doi: 10.1177/0142331216644046 zbMATHGoogle Scholar
  11. 11.
    Liu, S., Zhang, F.: Complex function projective synchronization of complex chaotic system and its applications in secure communication. Nonlinear Dyn. 76(2), 1087–1097 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Yang, J., Chen, Y., Zhu, F.: Associated observer-based synchronization for uncertain chaotic systems subject to channel noise and chaos-based secure communication. Neurocomputing 167, 587–595 (2015)CrossRefGoogle Scholar
  13. 13.
    Li, H., Liao, X., Luo, M.: A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation. Nonlinear Dyn. 68, 137–149 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ge, Z.M., Lin, G.H.: The complete, lag and anticipated synchronization of a BLDCM chaotic system. Chaos Solitons Fractals 34(3), 740–764 (2007)CrossRefGoogle Scholar
  15. 15.
    Pisarchik, A.N., Ruiz-Oliveras, F.R.: Optical chaotic communication using generalized and complete synchronization. IEEE J. Quantum Electron. 46(3), 279–284 (2010)CrossRefGoogle Scholar
  16. 16.
    Mariño, I.P., Allaria, E., Sanjuán, M.A., Meucci, R., Arecchi, F.T.: Coupling scheme for complete synchronization of periodically forced chaotic CO2 lasers. Phys. Rev. E. 70(3), 036208 (2004)CrossRefGoogle Scholar
  17. 17.
    Kheiri, H., Vafaei, V., Vafaei, E.: Coexistence of anti-phase and complete synchronization in a chaotic finance system. J. Dyn. Syst. Geom. Theor. 10(1), 33–45 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Chen, H.K.: Global chaos synchronization of new chaotic systems via nonlinear control. Chaos Solitons Fractals 23, 1245–1251 (2005)CrossRefzbMATHGoogle Scholar
  19. 19.
    Jiang, G.P., Zheng, W.X.: An LMI criterion for linear-state-feedback based chaos synchronization of a class of chaotic systems. Chaos Solitons Fractals 26, 437–443 (2005)CrossRefzbMATHGoogle Scholar
  20. 20.
    Ahn, C.K., Jung, S.T., Kang, S.K., Joo, S.C.: Adaptive \(H_{8}\) synchronization for uncertain chaotic systems with external disturbance. Commun. Nonlinear Sci. Numer. Simul. 15, 2168–2177 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Li, H., Liao, H., Li, C., Li, C.: Chaos control and synchronization via a novel chatter free sliding mode control strategy. Neurocomputing 74(17), 3212–3222 (2011)CrossRefGoogle Scholar
  22. 22.
    Lee, S.M., Choi, S.J., Ji, D.H., Park, J.H., Won, S.C.: Synchronization for chaotic Lur’e systems with sector-restricted nonlinearities via delayed feedback control. Nonlinear Dyn. 59, 277–288 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Guo, H., Zhong, S., Gao, F.: Design of PD controller for master-slave synchronization of Lur’e systems with time-delay. Appl. Math. Comput. 212, 86–93 (2009)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ikhlef, A., Mansouri, N.: Synchronization of Chaotic Systems Using Linear and Nonlinear Feedback Control. Chaos and Complex Systems. Springer, Berlin Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Lin, Z., Pachter, M., Banda, S.: Toward improvement of tracking performance: nonlinear feedback for linear systems. Int. J. Control 70, 1–11 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Chen, B.M., Cheng, G., Lee, T.H.: Modeling and compensation of nonlinearities and friction in a micro hard disk servo system with nonlinear control. IEEE Trans. Control Syst. Technol. 13(5), 708–721 (2005)CrossRefGoogle Scholar
  27. 27.
    He, Y., Chen, B.M., Wu, C.: Improving transient performance in tracking control for linear multivariable discrete-time systems with input saturation. Syst. Control Lett. 56, 25–33 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Majd, V.J., Mobayen, S.: An ISM-based CNF tracking controller design for uncertain MIMO linear systems with multiple time-delays and external disturbances. Nonlinear Dyn. 80(1–2), 591–613 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mobayen, S.: An LMI-based robust tracker for uncertain linear systems with multiple time-varying delays using optimal composite nonlinear feedback technique. Nonlinear Dyn. 80(1–2), 917–927 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Mobayen, S., Baleanu, D.: Stability analysis and controller design for the performance improvement of disturbed nonlinear systems using adaptive global sliding mode control approach. Nonlinear Dyn. 83(3), 1557–1565 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mondal, S., Mahanta, C.: Composite nonlinear feedback based discrete integral sliding mode controller for uncertain systems. Comm. Nonlinear Sci. Numer. Simul. 17(3), 1320–1331 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mobayen, S., Majd, V.J., Sojoodi, M.: An LMI-based composite nonlinear feedback terminal sliding-mode controller design for disturbed MIMO systems. Math. Comput. Simul. 85, 1–10 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Lin, D., Lan, W., Li, M.: Composite nonlinear feedback control for linear singular systems with input saturation. Syst. Control Lett. 60, 825–831 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Lin, D., Lan, W.: Output feedback composite nonlinear feedback control for singular systems with input saturation. J. Franklin Inst. 352, 384–398 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Lan, W., Chen, B.M., He, Y.: On improvement of transient performance in tracking control for a class of nonlinear systems with input saturation. Syst. Control Lett. 55, 132–138 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    He, Y., Chen, B.M., Wu, C.: Composite nonlinear control with state and measurement feedback for general multivariable systems with input saturation. Syst. Control Lett. 54, 455–469 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Chen, B.M., Lee, T.H., Peng, K., Venkataramanan, V.: Composite nonlinear feedback control for linear systems with input saturation: theory and an application. IEEE Trans. Autom. Control 48(3), 427–439 (2003)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wu, H.: Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays. IEEE Trans. Autom. Control 49(4), 611–616 (2004)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Mobayen, S.: Design of a robust tracker and disturbance attenuator for uncertain systems with time delays. Complexity 21(1), 340–348 (2015)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Hopp, T.H., Schmitendorf, W.E.: Design of a linear controller for robust tracking and model following. Trans. ASME 112, 552–558 (1990)zbMATHGoogle Scholar
  41. 41.
    Khalil, H.K., Grizzle, J.W.: Nonlinear Systems. Prentice hall, New Jersey (1996)Google Scholar
  42. 42.
    Pai, M.C.: Design of adaptive sliding mode controller for robust tracking and model following. J. Franklin Inst. 347, 1837–1849 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Zhang, F.: The Schur complement and its applications. Springer, New York (2006)Google Scholar
  44. 44.
    Wang, C., Chu, R., Ma, J.: Controlling a chaotic resonator by means of dynamic track control. Complexity 21(1), 370–378 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Ma, J., Long, H., Zhen-Bo, X., Wang, C.: Simulated test of electric activity of neurons by using Josephson junction based on synchronization scheme. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2659–2669 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Kuznetsov, N.V., Leonov, G.A., Vagaitsev, V.I.: Analytical-numerical method for attractor localization of generalized Chua’s system. In: Periodic Control Systems (PSYCO 2010), pp. 29–33. Antalya, Turkey (2010)Google Scholar
  47. 47.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Phys. D 241, 1482–1486 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Kuznetsov, N., Leonov, G.: Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors, vol. 19, No. 1, pp. 5445–5454. In: IFAC World Congress (2014)Google Scholar
  50. 50.
    Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurcat Chaos 23(01), 1330002 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of ZanjanZanjanIran
  2. 2.Department of MathematicsKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations