Skip to main content
Log in

Analytical solution for squeeze film damping of MEMS perforated circular plates using Green’s function

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Squeezed air film between two closely spaced vibrating microstructures is the important source of energy dissipation and has profound effects on the dynamics of microelectromechanical systems (MEMS). Perforations in the design are one of the methods to model these damping effects. The literature reveals that the analytical modeling of squeeze film damping of perforated circular microplates is less explored; however, these microplates are also an imperative part of the numerous MEMS devices. Here, we derive an analytical model of transverse and rocking motions of a perforated circular microplate. A modified Reynolds equation that incorporates compressibility and rarefaction effects is utilized in the analysis. Pressure distribution under the vibrating microplate is derived by using Green’s function and also derived by finite element method (FEM) to visualize the pressure distribution under perforated and non-perforated areas of the microplate. The analytical damping results are validated with previous renowned analytical models and also with the FEM results. The outcomes confirm the potential of the present analytical model to accurately predict the squeeze film damping parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abtahi, M., Vossoughi, G., Meghdari, A.: Effects of the van der waals force, squeeze-film damping, and contact bounce on the dynamics of electrostatic microcantilevers before and after pull-in. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1275-7

    Google Scholar 

  2. Liu, C.C., Liu, C.H.: Analysis of nonlinear dynamic behavior of electrically actuated micro-beam with piezoelectric layers and squeeze-film damping effect. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1384-3

    MathSciNet  Google Scholar 

  3. Blech, J.: On isothermal squeeze films. J. Lubr. Technol. (1995). doi:10.1115/1.3254692

    Google Scholar 

  4. Darling, R.B., Hivick, C., Xu, J.: Compact analytical modeling of squeeze film damping with arbitrary venting conditions using a greens function approach. Sensor Actuat. A-Phys. (1998). doi:10.1016/S0924-4247(98)00109-5

    Google Scholar 

  5. Nayfeh, A.H., Younis, M.I.: A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. J. Micromech. Microeng. (2004). doi:10.1088/0960-1317/14/2/0024

    Google Scholar 

  6. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Reduced-order models for MEMS applications. Nonlinear Dyn. (2005). doi:10.1007/s11071-005-2809-9

    MathSciNet  MATH  Google Scholar 

  7. Bao, M., Yang, H., Sun, Y., French, P.J.: Modified reynolds equation and analytical analysis of squeeze-film air damping of perforated structures. J. Micromech. Microeng. (2003). doi:10.1088/0960-1317/13/6/301

    Google Scholar 

  8. Pandey, A.K., Pratap, R., Chau, F.S.: Analytical solution of the modified reynolds equation for squeeze film damping in perforated MEMS structures. Sensor Actuat. A-Phys. (2007). doi:10.1016/j.sna.2006.09.006

    Google Scholar 

  9. Li, P., Yuming, F.: An analytical model for squeeze-film damping of perforated torsional microplates resonators. Sensors-Basel (2015). doi:10.3390/s150407388

    Google Scholar 

  10. Pratap, R., Mohite, S., Pandey, A.K.: Squeeze film effects in MEMS devices. J. Indian Inst. Sci. 87, 75–94 (2007)

    Google Scholar 

  11. Skvor, Z.: On acoustical resistance due to viscous losses in the air gap of electrostatic transducers. Acustica 19, 295–299 (1967)

    Google Scholar 

  12. Homentcovschi, D., Miles, R.N.: Modelling of viscous damping of perforated planar micromechanical structures, applications in acoustics. J. Acoust. Soc. Am. (2004). doi:10.1121/1.1798331

    Google Scholar 

  13. Homentcovschi, D., Miles, R.N.: Viscous microstructural dampers with aligned holes: Design procedure including the edge correction. J. Acoust. Soc. Am. (2007). doi:10.1121/1.2756169

    Google Scholar 

  14. Kwok, P., Weinberg, M., Breuer, K.: Fluid effects in vibrating micromachined structures. J. Microelectromech. Syst. (2005). doi:10.1109/JMEMS.2005.845425

    Google Scholar 

  15. Feng, C., Zhao, Y.P., Liu, D.Q.: Squeeze-film effects in MEMS devices with perforated plates for small amplitude vibration. Microsyst. Technol. (2006). doi:10.1007/s00542-006-0285-x

    Google Scholar 

  16. Mohite, S.S., Kesari, H., Sonti, V.R., Pratap, R.: Analytical solutions for the stiffness and damping coefficients of squeeze films in MEMS devices with perforated back plates. J. Micromech. Microeng. (2005). doi:10.1088/0960-1317/15/11/013

  17. Mohite, S., Sonti, V., Pratap, R.: A compact squeeze-film model including inertia, compressibility, and rarefaction effects for perforated 3-d MEMS structures. J. Microelectromech. Syst. (2008). doi:10.1109/JMEMS.2008.921675

  18. Bao, M., Yang, H.: Squeeze film air damping in MEMS. Sensor Actuat. A-Phys. (2007). doi:10.1016/j.sna.2007.01.008

    Google Scholar 

  19. Li, P., Fang, Y., Xu, F.: Analytical modeling of squeeze-film damping for perforated circular microplates. J. Sound Vib. (2014). doi:10.1016/j.jsv.2013.12.028

    Google Scholar 

  20. Pandey, A.K., Pratap, R.: A comparative study of analytical squeeze film damping models in rigid rectangular perforated MEMS structures with experimental results. Microfluid. Nanofluid. (2008). doi:10.1007/s10404-007-0165-4

    Google Scholar 

  21. Veijola, T., Rback, P.: Methods for solving gas damping problems in perforated microstructures using a 2D finite-element solver. Sensors-Basel (2007). doi:10.3390/s7071069

    Google Scholar 

  22. Miles, R.N., Robert, D., Hoy, R.R.: Mechanically Coupled Ears for Directional Hearing in the Parasitoid Fly Ormia ochracea. J. Acoust. Soc. Am. 98, 3059–3070 (1995)

    Article  Google Scholar 

  23. Touse, M., Sinibaldi, J., Simsek, K., Catterlin, J., Harrison, S., Karunasiri, G.: Fabrication of a microelectromechanical directional sound sensor with electronic readout using comb fingers. Appl. Phys. Lett. (2010). doi:10.1063/1.3418640

    Google Scholar 

  24. Knoernschild, C., Kim, T., Maunz, P., Crain, S.G., Kim, J.: Stable optical phase modulation with micromirrors. Opt. Express (2012). doi:10.1364/OE.20.003261

    Google Scholar 

  25. Xia, C., Qiao, D., Zeng, Q., Yuan, W.: The squeeze-film air damping of circular and elliptical micro-torsion mirrors. Microfluid. Nanofluid. (2015). doi:10.1007/s10404-015-1585-1

    Google Scholar 

  26. Ahmad, B., Pratap, R.: Analytical evaluation of squeeze film forces in a CMUT with sealed air-filled cavity. IEEE Sens. J. (2011). doi:10.1109/JSEN.2011.2119397

    Google Scholar 

  27. Pasquale, G., Veijola, T.: Comparative numerical study of FEM methods solving gas damping in perforated MEMS devices. Microfluid. Nanofluid. (2008). doi:10.1007/s10404-008-0264-x

    Google Scholar 

Download references

Acknowledgments

This work is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Number: 2013R1A1A2007684).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungki Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishfaque, A., Kim, B. Analytical solution for squeeze film damping of MEMS perforated circular plates using Green’s function. Nonlinear Dyn 87, 1603–1616 (2017). https://doi.org/10.1007/s11071-016-3136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3136-z

Keywords

Navigation