Lyapunov spectrum of chaotic maps with a long-range coupling mediated by a diffusing substance

Abstract

We investigate analytically and numerically coupled lattices of chaotic maps where the interaction is non-local, i.e., each site is coupled to all the other sites but the interaction strength decreases exponentially with the lattice distance. This kind of coupling models an assembly of pointlike chaotic oscillators in which the coupling is mediated by a rapidly diffusing chemical substance. We consider a case of a lattice of Bernoulli maps, for which the Lyapunov spectrum can be analytically computed and also the completely synchronized state of chaotic Ulam maps, for which we derive analytically the Lyapunov spectrum.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Kaneko, K., Tsuda, I.: Complex Systems: Chaos and Beyond: A Constructive Approach with Applications. Springer, Berlin (2001)

    Google Scholar 

  2. 2.

    Chazottes, J.-R., Fernandez, B. (eds.): Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems. Springer, Berlin (2005)

    Google Scholar 

  3. 3.

    Mitchel, M.: Complexity: A Guided Tour. Oxford University Press, Oxford (2009)

    Google Scholar 

  4. 4.

    Murray, J.D.: Mathematical Biology, vol. 1, 3rd edn. Springer, Berlin (2002)

    Google Scholar 

  5. 5.

    Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137 (2005)

    Article  Google Scholar 

  6. 6.

    Wiesenfeld, K., Colet, P., Strogatz, S.H.: Frequency locking in Josephson arrays: connection with the Kuramoto model. Phys. Rev. E. 57, 1563 (1998)

    Article  Google Scholar 

  7. 7.

    Kozyreff, G., Vladimirov, A.G., Mandel, P.: Global coupling with time delay in an array of semiconductor lasers. Phys. Rev. Lett. 85, 3809 (2000)

    Article  Google Scholar 

  8. 8.

    Strogatz, S.H., Mirollo, R.E., Matthews, P.C.: Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping. Phys. Rev. Lett. 68, 2730 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Breakspear, M., Heitmann, S., Daffertshofer, A.: Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front. Hum. Neurosci. 4, 190 (2010)

    Article  Google Scholar 

  10. 10.

    Ferrari, F.A.S., Viana, R.L., Lopes, S.R., Stoop, R.: Phase synchronization of coupled bursting neurons and the generalized Kuramoto model. Neural Netw. 66, 107 (2015)

    Article  Google Scholar 

  11. 11.

    Kuramoto, Y.: Scaling behavior of turbulent oscillators with non-local interaction. Prog. Theor. Phys. 94, 321–330 (1995)

    Article  Google Scholar 

  12. 12.

    Kuramoto, Y., Nakao, H.: Origin of power-law spatial correlations in distributed oscillators and maps with nonlocal coupling. Phys. Rev. Lett. 76, 4352 (1996)

    Article  Google Scholar 

  13. 13.

    Kuramoto, Y., Nakao, H.: Power-law spatial correlations and the onset of individual motions in self-oscillatory media with non-local coupling. Physica D. 103, 294–313 (1997)

    Article  MATH  Google Scholar 

  14. 14.

    Viana, R.L., Batista, A.M., Batista, C.A.S., de Pontes, J.C.A., Silva, F.A.S., Lopes, S.R.: Bursting synchronization in networks with long-range coupling mediated by a diffusing chemical substance. Commun. Nonlinear Sci. Numer. Simul. 17, 2924–2942 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Silva, F.A.S., Lopes, S.R., Viana, R.L.: Synchronization of biological clock cells with a coupling mediated by the local concentration of a diffusing substance. Commun. Nonlinear Sci. Numer. Simul. 35, 37–52 (2016)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Batista, A.M., Viana, R.L.: Kolmogorov-Sinai entropy for locally coupled piecewise linear maps. Phys. A 308, 125–134 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Anteneodo, C., Pinto, S.E.S., Batista, A.M., Viana, R.L.: Analytical results for coupled-map lattices with long-range interactions. Phys. Rev. E 68, 045202 (2003)

    Article  Google Scholar 

  18. 18.

    Anteneodo, C., Batista, A.M., Viana, R.L.: Chaos synchronization in long-range coupled map lattices. Phys. Lett. A 326, 227–233 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Batista, A.M., Viana, R.L.: Lyapunov exponents of a lattice of chaotic maps with a power law coupling. Phys. Lett. A 286, 134 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    dos Santos, A.M., Woellner, C.F., Lopes, S.R., Batista, A.M., Viana, R.L.: Lyapunov spectrum of a lattice of chaotic systems with local and non-local couplings, Chaos. Solit. Fract. 32, 702 (2007)

    Article  MATH  Google Scholar 

  21. 21.

    González-Avella, J.C., Anteneodo, C.: Complete synchronization equivalence in asynchronous and delayed coupled maps. Phys. Rev. E 93, 052230 (2016)

    Article  Google Scholar 

  22. 22.

    Bagchi, D., Tsallis, C.: Sensitivity to initial conditions of a \(d\)-dimensional long-range-interaction quartic Fermi-Pasta-Ulam model: Universal scaling. Phys. Rev. E 93, 062213 (2016)

    Article  Google Scholar 

  23. 23.

    Christodoulidi, H., Bountis, T., Drossos, L.: Numerical integration of variational equations for Hamiltonian systems with long range interactions. Appl. Numer. Math. 104, 158 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Laffargue, T., Sollich, P., Tailleur, J., van Wijland, F.: Large-scale fluctuations of the largest Lyapunov exponent in diffusive systems. Europhys. Lett. 110, 10006 (2015)

    Article  Google Scholar 

  25. 25.

    Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Benjamin-Cummings Publishing Co, San Francisco (1986)

    Google Scholar 

  26. 26.

    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

  27. 27.

    Kaneko, K.: Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements. Phys. D 41, 137 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Kaneko, K.: Pattern dynamics in spatiotemporal chaos: pattern selection, diffusion of defect and pattern competition intermettency. Phys. D. 34, 1–41 (1989)

    Article  MATH  Google Scholar 

  29. 29.

    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The art of scientific computing. University Press, Cambridge (1992)

    Google Scholar 

  30. 30.

    Pesin, Ya B.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32, 55–114 (1977)

    Article  MATH  Google Scholar 

  31. 31.

    Ruelle, D.: An inequality for the entropy of differentiable maps. Bol. Soc. Bras. Mat. 9, 83–87 (1978)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Ott, E.: Chaos in Dynamical Systems. University Press, Cambridge (1994)

    Google Scholar 

  33. 33.

    Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69, 32–47 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. University Press, Cambridge (2001)

    Google Scholar 

  36. 36.

    Bricmont, J., Kupiainen, A.: Infinite-dimensional SRB measures. Phys. D 103, 18–33 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Nagai, Y., Lai, Y.-C.: Periodic-orbit theory of the blowout bifurcation. Phys. Rev. E 56, 4031 (1997)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Viana, R.L., Grebogi, C., Pinto, S.E.S., Lopes, S.R., Batista, A.M., Kurths, J.: Bubbling bifurcations: loss of synchronization and shadowing breakdown in complex systems. Phys. D 206, 94 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Vasconcelos, D.B., Viana, R.L., Lopes, S.R., Batista, A.M., Pinto, S.E.S.: Spatial correlations and synchronization in coupled map lattices with long-range interactions. Phys. A 343, 201 (2004)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Viana, R.L., Grebogi, C., Pinto, S.E.S., Lopes, S.R., Batista, A.M., Kurths, J.: Validity of numerical trajectories in the synchronization transition of complex systems. Phys. Rev. E 68, 067204 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible with the partial financial support of the following Brazilian government agencies: CNPq, CAPES, FAPESP (Grant 2016/16148-5), and Fundação Araucária (State of Paraná).

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. L. Viana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Viana, R.L., Batista, A.M., Batista, C.A.S. et al. Lyapunov spectrum of chaotic maps with a long-range coupling mediated by a diffusing substance. Nonlinear Dyn 87, 1589–1601 (2017). https://doi.org/10.1007/s11071-016-3135-0

Download citation

Keywords

  • Lyapunov exponents
  • Coupled map lattices
  • Long-range coupling