Skip to main content

Advertisement

Log in

New power law inequalities for fractional derivative and stability analysis of fractional order systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Three new power law inequalities for fractional derivative are proposed in this paper. We generalize the original useful power law inequality, which plays an important role in the stability analysis of pseudo state of fractional order systems. Moreover, three stability theorems of fractional order systems are given in this paper. The stability problem of fractional order linear systems can be converted into the stability problem of the corresponding integer order systems. For the fractional order nonlinear systems, a sufficient condition is obtained to guarantee the stability of the true state. The stability relation between pseudo state and true state is given in the last theorem by the final value theorem of Laplace transform. Finally, two examples and numerical simulations are presented to demonstrate the validity and feasibility of the proposed theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  2. Rahimy, M.: Applications of fractional differential equations. Appl. Math. Sci. 4, 2453–2461 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A.: Advances in Fractional Calculus. Springer, New York (2007)

    Book  MATH  Google Scholar 

  4. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2012)

    Book  Google Scholar 

  5. Zhou, Y., Ionescu, C., Tenreiro Machado, J.A.: Fractional dynamics and its applications. Nonlinear Dyn. 80, 1661–1664 (2015)

    Article  MathSciNet  Google Scholar 

  6. Sabatier, J., Aoun, M., Oustaloup, A., Grégoire, G., Ragot, F., Roy, P.: Fractional system identification for lead acid battery state of charge estimation. Signal Process. 86, 2645–2657 (2006)

    Article  MATH  Google Scholar 

  7. Gabano, J.D., Poinot, T.: Fractional modelling and identification of thermal systems. Signal Process. 91, 531–541 (2011)

    Article  MATH  Google Scholar 

  8. Ezzat, M.A., Alsowayan, N.S., Al-Muhiameed, Z.I.A., Ezzat, S.M.: Fractional modelling of Pennes’ bioheat transfer equation. Heat Mass Transf. 50, 907–914 (2014)

    Article  Google Scholar 

  9. Matignon, D.: Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl. 2, 963–968 (1996)

    Google Scholar 

  10. Deng, W.H., Li, C.P., Lü, J.H.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Qian, D.L., Li, C.P., Agarwal, R.P., Wong, P.J.Y.: Stability analysis of fractional differential system with Riemann–Liouville derivative. Math. Comput. Model. 52, 862–874 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y., Chen, Y.Q., Podlubny, I.: MittagCLeffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized MittagCLeffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. HosseinNia, S.H., Tejado, I., Vinagre, B.M.: Stability of fractional order switching systems. Comput. Math. Appl. 66, 585–596 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. HosseinNia, S.H., Tejado, I., Vinagre, B.M.: Stability analysis of fractional order systems based on T-S fuzzy model with the fractional order \(\alpha :0<\alpha <1\). Nonlinear Dyn. 78, 2909–2919 (2014)

    Article  MathSciNet  Google Scholar 

  16. Zhang, R.X., Tian, G., Yang, S.P., Cao, H.F.: Stability analysis of a class of fractional order nonlinear systems with order lying in \((0, 2)\). ISA Trans. 56, 102–110 (2015)

    Article  Google Scholar 

  17. Čermák, J., Kisela, T.: Stability properties of two-term fractional differential equations. Nonlinear Dyn. 80, 1673–1684 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhao, L.D., Hu, J.B., Fang, J.A., Zhang, W.B.: Studying on the stability of fractional-order nonlinear system. Nonlinear Dyn. 70, 475–479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, J.R., Lv, L.L., Zhou, Y., Zhang, W.B.: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2530–2538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jarad, F., Abdeljawad, T., Baleanu, D.: Stability of q-fractional non-autonomous systems. Nonlinear Anal.: Real World Appl. 14, 780–784 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Medved’, M., Pospíšil, M., Šripková, L., Zhang, W.B.: On exponential stability of nonlinear fractional multidelay integro-differential equations defined by pairwise permutable matrices. Appl. Math. Comput. 227, 456–468 (2014)

    MathSciNet  Google Scholar 

  22. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  23. Ding, D.S., Qi, D.L., Wang, Q.: Non-linear MittagCLeffler stabilisation of commensurate fractional-order non-linear systems. IET Control Theory Appl. 9, 681–690 (2015)

    Article  MathSciNet  Google Scholar 

  24. Sabatier, J., Farges, C., Merveillaut, M., Feneteau, L.: On observability and pseudo state estimation of fractional order systems. Eur. J. Control 3, 260–271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sabatier, J., Farges, C., Trigeassou, J.C.: Fractional systems state space description: some wrong ideas and proposed solutions. J. Vib. Control 20, 1076–1084 (2013)

    Article  MathSciNet  Google Scholar 

  26. Sabatier, J., Farges, C.: Analysis of fractional models physical consistency. J. Vib. Control (2015). doi:10.1177/1077546315587177

    MATH  Google Scholar 

  27. Trigeassou, J.C., Maamri, N.: State space modeling of fractional differential equations and the initial condition problem. In: IEEE SSD’ 2009 Conference, March 2009, Djerba, (2009)

  28. Trigeassou, J.C., Maamri, N.: Initial conditions and initialization of linear fractional differential equations. Signal Process. 91, 427–436 (2009)

    Article  MATH  Google Scholar 

  29. Hartley, T.T., Lorenzo, C.F.: The error incurred in using the Caputo derivative Laplace transform. In: Proceedings of the ASME IDET-CIE Conferences San Diego (2009)

  30. Lorenzo, C.F., Hartley, T.T.: Time-varying initialization and Laplace transform of the Caputo derivative: with order between zero and one. In: Proceedings of IDETC/CIE FDTA2011 Conference, August 2011, Washington, (2011)

  31. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Comput. Math. Appl. 91, 437–445 (2011)

    MATH  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  33. Aghababa, M.P.: A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems. Nonlinear Dyn. 78, 2129–2140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rivero, M., Rogosin, S,V., Tenreiro Machado, J.A., Trujillo, J.J.: Stability of fractional Order Systems. Math. Probl. Eng., Article ID 356215, p. 14 (2013)

  35. Dzieliński, A., Sierociuk, D.: Adaptive feedback control of fractional order discrete state-space systems. In: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and the International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC 05), pp. 804–809 (2005)

  36. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-order systems and controls. Adv. Ind. Control (2010)

  37. Farges, C., Moze, M., Sabatier, J.: Pseudo-state feedback stabilization of commensurate fractional order systems. Automatica 46, 1730–1734 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lorenzo, C.F., Hartley, T.T.: Initialization in fractional order systems. In European Control Conference, Porto, pp. 1471–1476 (2001)

  39. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: State variables and transients of fractional order differential systems. Comput. Math. Appl. 64, 3117–3140 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chen, G.S.: A generalized Young inequality and some new results on fractal space. Automatica 1, 56–59 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61503292, 61174213 and 61502373) and Fundamental Research Funds for the Central Universities (Grant No. XJS15030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisheng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Chen, W. New power law inequalities for fractional derivative and stability analysis of fractional order systems. Nonlinear Dyn 87, 1531–1542 (2017). https://doi.org/10.1007/s11071-016-3131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3131-4

Keywords

Navigation