Skip to main content
Log in

Recursive identification of discrete-time nonlinear cascade systems with time-varying output hysteresis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A recursive identification method for discrete-time nonlinear cascade systems with a linear dynamic system followed by a time-varying output hysteresis is presented. The mathematical model is based on the application of a special form of Coleman–Hodgdon hysteresis model and a compound operator decomposition technique and is linear-in-parameters. The recursive least-squares algorithm with internal variable estimation is used for the time-varying parameter identification. Simulation studies show the feasibility of proposed approach to estimate the model parameters and track their changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Krasnosel’skii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Nauka, Moscow (1983). (in Russian)

    MATH  Google Scholar 

  2. Mayergoyz, D.: Mathematical Models of Hysteresis. Springer, New York (1991)

    Book  MATH  Google Scholar 

  3. Kalaš, V., Jurišica, L., Žalman, M., Almássy, S., Siviček, P., Varga, A., Kalaš, D.: Nonlinear and Numerical Servosystems. Alfa/SNTL, Bratislava (1985). (in Slovak)

    Google Scholar 

  4. Macki, J.W., Nistri, P., Zecca, P.: Mathematical models for hysteresis. SIAM Rev. 35(1), 94–123 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, Y., Chen, X.B.: A survey of modeling and control issues for Piezo-electric actuators. J. Dyn. Syst. Meas. Control Trans. ASME 137(1), art. 014001 (2014)

    Article  Google Scholar 

  6. Riccardi, L., Naso, D., Turchiano, B., Janocha, H.: Adaptive control of positioning systems with hysteresis based on magnetic shape memory alloys. IEEE Trans. Control Syst. Technol. 21(6), 2011–2023 (2013)

    Article  Google Scholar 

  7. Minh, T.V., Tjahjowidodo, T., Ramon, H., van Brussel, H.: A new approach to modeling hysteresis in a pneumatic artificial muscle using the Maxwell-slip model. IEEE/ASME Trans. Mechatron. 16(1), 177–186 (2011)

    Article  Google Scholar 

  8. Tan, X., Baras, J.S.: Adaptive identification and control of hysteresis in smart materials. IEEE Trans. Autom. Control 50(6), 827–839 (2005)

    Article  MathSciNet  Google Scholar 

  9. Webb, G., Lagoudas, D., Kurdila, A.: Adaptive hysteresis compensation for SMA actuators with stress-induced variations in hysteresis. J. Intell. Mater. Syst. Struct. 10(11), 845–854 (1999)

    Google Scholar 

  10. Mokaberi, B., Requicha, A.A.G.: Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. Autom. Sci. Eng. 5(2), 197–206 (2008)

    Article  Google Scholar 

  11. Chua, L.O., Bass, S.C.: A generalized hysteresis model. IEEE Trans. Circuit Theory 19(1), 36–48 (1972)

    Article  Google Scholar 

  12. Hassani, V., Tjahjowidodo, T., Do, T.N.: A survey on hysteresis modeling, identification and control. Mech. Syst. Signal Process. 49, 209–233 (2014)

    Article  Google Scholar 

  13. Coleman, B.D., Hodgdon, M.L.: A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials. Int. J. Eng. Sci. 24(6), 897–919 (1986)

    Article  MATH  Google Scholar 

  14. Hodgdon, M.L.: Applications of a theory of ferromagnetic hysteresis. IEEE Trans. Magn. 24(1), 218–221 (1988)

    Article  Google Scholar 

  15. Hodgdon, M.L.: Mathematical theory and calculations of magnetic hysteresis curves. IEEE Trans. Magn. 24(6), 3120–3122 (1988)

    Article  Google Scholar 

  16. Cao, Y., Chen, X.B.: A novel discrete ARMA-based model for piezoelectric actuator hysteresis. IEEE/ASME Trans. Mechatron. 17(4), 737–744 (2012)

    Article  MathSciNet  Google Scholar 

  17. Merry, R., Uyanik, M., van de Molengraft, R., Koops, R., van Veghel, M., Steinbuch, M.: Identification, control and hysteresis compensation of a 3 DOF metrological AFM. Asian J. Control 11(2), 130–143 (2009)

    Article  Google Scholar 

  18. Salah, M.H., McIntyre, M.L., Dawson, D.M., Wagner, J.R., Tatlicioglu, E.: Charge feedback-based robust position tracking control for piezoelectric actuators. IET Control Theory Appl. 6, 1–14 (2012)

    Article  MathSciNet  Google Scholar 

  19. Su, C.Y., Stepanenko, Y., Svoboda, J., Leung, T.P.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 45(12), 2427–2432 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. van Bree, P.J., van Lierop, C.M.M., van den Bosch, P.P.J.: Control-oriented hysteresis models for magnetic electron lenses. IEEE Trans. Magn. 45, 5235–5238 (2009)

    Article  Google Scholar 

  21. Zhou, J., Wen, C., Zhang, Y.: Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 49, 1751–1757 (2004)

    Article  MathSciNet  Google Scholar 

  22. Banning, R., de Koning, W.L., Adriaens, H.J.M.T.A., Koops, R.K.: State-space analysis and identification for a class of hysteretic systems. Automatica 37(12), 1883–1892 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vörös, J.: Identification of nonlinear cascade systems with output hysteresis based on the key term separation principle. Appl. Math. Model. 39(18), 5531–5539 (2015)

  24. Zhou, L., Li, X., Pan, F.: Gradient-based iterative identification for Wiener nonlinear systems with non-uniform sampling. Nonlinear Dyn. 76(1), 627–634 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, J., Lu, X., Ding, R.: Gradient-based iterative algorithm for Wiener systems with saturation and dead-zone nonlinearities. J. Vib. Control 20(4), 634–640 (2014)

    Article  MathSciNet  Google Scholar 

  26. Giri, F., Rochdi, Y., Brouri, A., Radouane, A., Chaoui, F.Z.: Frequency identification of nonparametric Wiener systems containing backlash nonlinearities. Automatica 49, 124–137 (2013)

  27. Janczak, A.: Instrumental variables approach to identification of a class of MIMO Wiener systems. Nonlinear Dyn. 48, 275–284 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jin, Q., Dou, J., Ding, F., Cao, L.: A novel identification method for Wiener systems with the limited information. Math. Comput. Model. 58(7–8), 1531–1539 (2013)

    Article  Google Scholar 

  29. Wachel, P., Mzyk, G.: Direct identification of the linear block in Wiener system. Int. J. Adapti. Control Signal Process. 30(1), 93–105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pawlak, M., Hasiewicz, Z., Wachel, P.: On nonparametric identification of Wiener systems. IEEE Trans. Signal Process. 55, 482–492 (2007)

    Article  MathSciNet  Google Scholar 

  31. Kazlauskas, K., Pupeikis, R.: On intelligent extraction of an internal signal in a Wiener system consisting of a linear block followed by hard-nonlinearity. Informatica 24(1), 35–58 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Reyland, J., Bai, E.W.: Generalized Wiener system identification: general backlash nonlinearity and finite impulse response linear part. Int. J. Adapt. Control Signal Process. 28(11), 1174–1188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Y., Ding, F.: Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering. Nonlinear Dyn. 84(2), 1045–1053 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vörös, J.: Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities. IEEE Trans. Autom. Control 44(11), 2145–2149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vörös, J.: Modeling and parameter identification of systems with multisegment piecewise-linear characteristics. IEEE Trans. Autom. Control 47(1), 184–188 (2002)

    Article  MathSciNet  Google Scholar 

  36. Vörös, J.: Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Trans. Autom. Control 48(12), 2203–2206 (2003)

    Article  MathSciNet  Google Scholar 

  37. Ljung, L., Söderström, T.: Theory and Practice of Recursive Identification. MIT Press, Cambridge (1983)

    MATH  Google Scholar 

  38. Ikhouane, F., Rodellar, J.: On the hysteretic Bouc–Wen model. Part I: forced limit cycle characterization. Nonlinear Dyn. 42, 63–78 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ikhouane, F., Rodellar, J.: On the hysteretic Bouc–Wen model. Part II: robust parametric identification. Nonlinear Dyn. 42, 79–95 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chidambaram, M.: Computer Control of Processes. CRC Press, New York (2001)

    Google Scholar 

  41. Vörös, J.: Iterative identification of nonlinear dynamic systems with output backlash using three-block cascade models. Nonlinear Dyn. 79(3), 2187–2195 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges financial support from the Slovak Scientific Grant Agency (VEGA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Vörös.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vörös, J. Recursive identification of discrete-time nonlinear cascade systems with time-varying output hysteresis. Nonlinear Dyn 87, 1427–1434 (2017). https://doi.org/10.1007/s11071-016-3124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3124-3

Keywords

Navigation