Skip to main content
Log in

Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Thermal shock-induced vibration suppression of an axially moving beam with a nonlinear energy sink (NES) is investigated. Owing to thermal shock on the beam, the beam is subjected to excessive vibrations. The equation for the transverse vibration of the beam with thermal shock is established using Hamilton’s principle, and the equation for the beam with NES is approximated by the Galerkin method. A numerical algorithm is used to obtain the displacement responses of the beam with and without NES attached under thermal shock. The NES efficiencies at different positions are obtained. Results show the NES can absorb a large number of vibrational energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gilat, R., Aboudi, J.: Thermomechanical coupling effects on the dynamic inelastic response and buckling of metal matrix composite infinitely wide plates. Compos. Struct. 35, 49–63 (1996)

    Article  Google Scholar 

  2. Ghayesh, M.H., Amabili, M.: Steady-state transverse response of an axially moving beam with time-dependent axial speed. Int. J. Nonlinear Mech. 49, 40–49 (2013)

    Article  MATH  Google Scholar 

  3. Chen, L.Q., Yang, X.D.: Nonlinear free transverse vibration of an axially moving beam: comparison of two models. J. Sound Vib. 299, 348–354 (2007)

    Article  MATH  Google Scholar 

  4. Ghayesh, M.H., Amabili, M.: Nonlinear dynamics of axially moving viscoelastic beams over the buckled state. Comput. Struct. 112–113, 406–421 (2012)

    Article  Google Scholar 

  5. Hein, J., Storm, J., Kuna, M.: Numerical thermal shock analysis of functionally graded and layered materials. Int. J. Therm. Sci. 60, 41–51 (2012)

    Article  Google Scholar 

  6. Ghayesh, M.H., Amabili, M., Kazemirad, S.: Thermo-mechanical nonlinear dynamics of a buckled axially moving beam. Arch. Appl. Mech. (2013). doi:10.1007/s00419-012-0630-8

    MATH  Google Scholar 

  7. Zhang, Y., Zhang, J.R.: Combined control of fast attitude maneuver and stabilization for large complex spacecraft. Acta Mech. Sin. 29(6), 875–882 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, H., Chen, L.Q.: Natural frequencies of nonlinear vibration of axially moving beams. Nonlinear Dyn. 63, 125–134 (2011). doi:10.1007/s11071-010-9790-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghayesh, M.H.: Coupled longitudinal-transverse dynamics of an axially accelerating beam. J. Sound Vib. 331(23), 5107–5124 (2012). doi:10.1016/j.jsv.2012.06.018

    Article  Google Scholar 

  10. Li, S.R., Fan, L.L.: Transient dynamic response of Timoshenko beams under thermal shock. J. Sound Vib. 27, 122–126 (2008)

    Google Scholar 

  11. Burak Özhan, B., Pakdemirli, M.: A general solution procedure for the forced vibrations of a system with cubic nonlinearities: three-to-one internal resonances with external excitation. J. Sound Vib. 329, 2603–2615 (2010)

    Article  Google Scholar 

  12. Ghayesh, M.H., Amabili, M., Païdoussis, M.P.: Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: two-dimensional analysis. Nonlinear Dyn. 70(1), 335–354 (2012)

    Article  MathSciNet  Google Scholar 

  13. Rostam, M.R., Javid, F., Esmailzadeh, E., Younesian, D.: Vibration suppression of curved beams traversed by off-center moving loads. J. Sound Vib. 352, 1–15 (2015)

    Article  Google Scholar 

  14. Ghayesh, M.H., Kazemirad, S., Amabili, M.: Coupled longitudinal-transverse dynamics of an axially moving beam with an internal resonance. Mech. Mach. Theory 52, 18–34 (2012)

    Article  Google Scholar 

  15. Gendelman, O.V.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25, 237–253 (2001)

    Article  MATH  Google Scholar 

  16. McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Nonlinear Mech. 40, 891–899 (2005)

    Article  MATH  Google Scholar 

  17. Gendelman, O.V.: Targeted energy transfer in systems with external and self-excitation. J. Eng. Mech. ASCE 225, 2007–2043 (2011)

    Google Scholar 

  18. Alexander, F.V.: Shock isolation through the use of nonlinear energy sinks. J. Vib. Control 9(1–2), 79–93 (2003)

    MATH  Google Scholar 

  19. Gendelman, O., Manevitch, L.I., Vakakis, A.F., Closkey, R.M.: Energy pumping in nonlinear mechanical oscillators: part I-dynamics of the underlying Hamiltonian systems. J. Appl. Mech. Trans. ASME 68(1), 34–41 (2001)

    Article  MATH  Google Scholar 

  20. Vakakis, A.F., Gendelman, O.: Energy pumping in coupled mechanical oscillators II: resonance capture. J. Appl. Mech. Trans. ASME 68(1), 42–48 (2001)

    Article  MATH  Google Scholar 

  21. Vakakis, A.F.: Inducing passive nonlinear energy sinks in linear vibrating systems. J. Vib. Acoust. 123(3), 324–332 (2001)

    Article  Google Scholar 

  22. Angelo, L., Daniele, Z.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81, 425–435 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Y.W., Zang, J., Yang, T.Z., Fang, B., Wen, X.: Vibration suppression of an axially moving string with transverse wind loadings by a nonlinear energy sink. Math. Probl. Eng. (2013). doi:10.1155/2013/348042

    MathSciNet  MATH  Google Scholar 

  24. Yang, T.Z., Yang, X.D., Li, Y.H., Fang, B.: Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity. J. Vib. Control 20(9), 1293–1300 (2014)

    Article  MathSciNet  Google Scholar 

  25. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2304-x

    Google Scholar 

  26. Nili Ahmadabadi, Z., Khadem, S.E.: Nonlinear vibration control of a cantilever beam by a nonlinear energy sink. Mech. Mach. Theory 50, 134–149 (2012)

    Article  Google Scholar 

  27. Georgiades, F., Vakakis, A.F.: Dynamics of a linear beam with an attached local nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 12(5), 643–651 (2007)

  28. Parseh, M., Dardel, M., Ghasemi, M.H., Pashaei, M.H.: Steady state dynamics of a non-linear beam coupled to a nonlinear energy sink. Int. J. Nonlinear Mech. 79, 48–65 (2016)

    Article  Google Scholar 

  29. Wang, L., Chen, H.H., He, X.D.: Dynamics response and control of an axially moving beam with supersonic speed under thermal shock. J. Vib. Eng. 24(6), 590–594 (2011)

    Google Scholar 

  30. Wang, J.M., Li, Y.H.: Studies of the coupled thermoelastic vibration for the axially moving viscoelastic sandwich structure, O32-621 (2014)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Project Nos. 11402151, 11572182, 51305421 and 11232009). The authors acknowledge the funding support Natural Science Foundation of Liaoning Province (Project No. 2015020106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YW., Yuan, B., Fang, B. et al. Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink. Nonlinear Dyn 87, 1159–1167 (2017). https://doi.org/10.1007/s11071-016-3107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3107-4

Keywords

Navigation