Skip to main content
Log in

Riemann theta solutions and their asymptotic property for a (3\(+\)1)-dimensional water wave equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we consider the (3\(+\)1)-dimensional water wave equation \(u_{yzt}+u_{xxxyz}-6u_{x}u_{xyz}-6u_{xy}u_{xz}=0.\) Based on Bell polynomials, we obtain its Hirota bilinear equation which enable us to acquire Riemann theta solutions including arbitrary differentiable functions. Furthermore, we analyze the asymptotic property of these solutions and reveal the relationship between these solutions and the soliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. Res. I. Math. Sci. 19(3), 943–1001 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yajima, N., Oikawa, M., Satsuma, J.: Interaction of ion-acoustic solitons in three-dimensional space. J. Phys. Soc. Jpn. 44(5), 1711–1714 (1978)

    Article  Google Scholar 

  3. Kako, F., Yajima, N.: Interaction of ion-acoustic solitons in two-dimensional space. J. Phys. Soc. Jpn. 49(5), 2063–2071 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bogoyavlenskii, O.I.: Overturning solitons in new two-dimensional integrable equations. Math. USSR-Izv. 34(2), 245–259 (1990)

    Article  MathSciNet  Google Scholar 

  5. Bogoyavlenskii, O.I.: Breaking solitons in 2\(+\)1-dimensional integrable equations. Russian Math. Surv. 45(4), 1–89 (1990)

    Article  MathSciNet  Google Scholar 

  6. Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109(4), 044102 (2012)

    Article  Google Scholar 

  7. Dorizzi, B., Grammaticos, B., Ramani, A., Winternitz, P.: Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable? J. Math. Phys. 27(12), 2848–2852 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boiti, M., Leon, J.P., Manna, M., Pempinelli, F.: On the spectral transform of a Korteweg–de Vries equation in two spatial dimensions. Inverse Probl. 2(3), 271–279 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clarkson, P.A., Mansfield, E.L.: On a shallow water wave equation. Nonlinearity 7, 975–1000 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wahlquist, H.D., Estabrook, F.B.: Bäcklund transformation for solutions of the Korteweg–de Vries equation. Phys. Rev. Lett. 31(23), 1386 (1973)

    Article  MathSciNet  Google Scholar 

  11. Fan, E.G., Zhang, H.Q.: Bäcklund transformation and exact solutions for Whitham–Broer–Kaup equations in shallow water. Appl. Math. Mech. Engl. Ed. 19(8), 713–716 (1998)

    Article  MATH  Google Scholar 

  12. Zhai, B.G., Zhang, W.G., Wang, X.L., Zhang, H.Q.: Multi-rogue waves and rational solutions of the coupled nonlinear Schrödinger equations. Nonlinear Anal. RWA 14(1), 14–27 (2013)

    Article  MATH  Google Scholar 

  13. Matveev, V.B.: Darboux transformation and explicit solutions of the Kadomtcev–Petviaschvily equation, depending on functional parameters. Lett. Math. Phys. 3(3), 213–216 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, Y., Ma, W.X., Zhang, J.E.: Darboux transformations of classical Boussinesq system and its new solutions. Phys. Lett. A 275(1), 60–66 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, R., Tian, B., Lü, X., Zhang, H.Q., Liu, W.J.: Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear Schrödinger–Maxwell–Bloch system with symbolic computation. Comput. Math. Math. Phys. 52(4), 565–577 (2012)

    Article  MathSciNet  Google Scholar 

  16. Guo, B.L., Ling, L., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85(2), 026607 (2012)

    Article  Google Scholar 

  17. Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701–709 (2013)

    Article  MathSciNet  Google Scholar 

  18. Guo, R., Hao, H.Q.: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrodinger equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2426–2435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289(1), 69–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphi (1981)

    Book  MATH  Google Scholar 

  21. Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  22. Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernouli’s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, J.B., Liu, Z.R.: Smooth and non-smooth traveling waves in a nonlinearly dispersive equation. Appl. Math. Model. 25(1), 41–56 (2000)

    Article  MATH  Google Scholar 

  24. Song, M., Yang, C.X., Zhang, B.G.: Exact solitary wave solutions of the Kadomtsov–Petviashvili–Benjamin–Bona–Mahony equation. Appl. Math. Comput. 217(4), 1334–1339 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Liu, R., Yan, W.F.: Some common expressions and new bifurcation phenomena for nonlinear waves in a generalized mKdV equation. Int. J. Bifurcat. Chaos 23(03), 1330007 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rui, W.G.: The integral bifurcation method combined with factoring technique for investigating exact solutions and their dynamical properties of a generalized Gardner equation. Nonlinear Dyn. 76, 1529–1542 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wen, Z.: Several new types of bounded wave solutions for the generalized two-component Camassa–Holm equation. Nonlinear Dyn. 77, 849–857 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  29. Hirota, R.: Exact solutions of the Korteweg–de Vries equation for multiple collisions of solutions. Phys. Rev. Lett. 27(18), 1192–1194 (1971)

    Article  MATH  Google Scholar 

  30. Zhen, H.L., Tian, B., Sun, W.R.: Dynamics of an integrable Kadomtsev–Petviashvili-based system. Appl. Math. Lett. 27, 90–96 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zuo, D.W., Gao, Y.T., Meng, G.Q., Shen, Y.J., Yu, X.: Multi-soliton solutions for the three-coupled KdV equations engendered by the Neumann system. Nonlinear Dyn. 75, 701–708 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Krishnan, E.V., Ghabshi, M.A., Mirzazadeh, M., Bhrawy, A.H., Biswas, A., Belic, M.: Optical solitons for quadratic law nonlinearity with five integration schemes. J. Comput. Theor. Nanosci. 12(11), 4809–4821 (2015)

    Google Scholar 

  33. Mirzazadeh, M., Eslami, M., Bhrawy, A.H., Biswas, A.: Integration of complex-valued Klein–Gordon equation in \(\Phi \)-4 field theory. Rom. J. Phys. 60, 293–310 (2015)

    Google Scholar 

  34. Biswas, A., Mirzazadeh, M., Savescu, M., Milovic, D., Khan, K.R., Mahmood, M.F., Belic, M.: Singular solitons in optical metamaterials by ansatz method and simplest equation approach. J. Mod. Opt. 61, 1550–1555 (2014)

    Article  Google Scholar 

  35. Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in Birefringent fibers with four-wave mixing for kerr law nonlinearity. Optoelectron. Adv. Mat. 9, 10–13 (2015)

    Google Scholar 

  36. Triki, H., Mirzazadeh, M., Bhrawy, A.H., Razborova, P., Biswas, A.: Solitons and other solutions to long-wave short-wave interaction equation. Rom. J. Phys. 60(1–2), 72–86 (2015)

  37. Zhou, Q., Zhong, Y., Mirzazadeh, M., Bhrawy, A.H., Zerrad, E., Biswas, A.: Thirring combo-solitons with cubic nonlinearity and spatio-temporal dispersion. Wave. Random Complex 26(2), 204–210 (2016)

    Article  MathSciNet  Google Scholar 

  38. Zhou, Q., Mirzazadeh, M., Zerrad, E., Biswas, A., Belic, M.: Bright, dark, and singular solitons in optical fibers with spatio-temporal dispersion and spatially dependent coefficients. J. Mod. Opt. 63(10), 950–954 (2016)

    Article  Google Scholar 

  39. Wazwaz, A.M.: Multiple soliton solutions and multiple singular soliton solutions for the (3\(+\)1)-dimensional Burgers equations. Appl. Math. Comput. 204, 942–948 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Wazwaz, A.M.: Multiple-soliton solutions for a (3\(+\)1)-dimensional generalized KP equation. Commun. Nonlinear Sci. Numer. Simul. 17, 491–495 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wen, X.Y., Xu, X.G.: Multiple soliton solutions and fusion interaction phenomena for the (2\(+\)1)-dimensional modified dispersive water-wave system. Appl. Math. Comput. 219, 942–948 (2013)

    MathSciNet  Google Scholar 

  42. Guo, R., Hao, H.Q.: Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers. Ann. Phys. 344, 10–16 (2014)

    Article  MATH  Google Scholar 

  43. Wazwaz, A.M.: Multiple-soliton solutions and multiple-singular soliton solutions for two higher-dimensional shallow water wave equations. Appl. Math. Comput. 211, 495–501 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Chen, Y.R., Liu, R.: Some new nonlinear wave solutions for two (3\(+\)1)-dimensional equations. Appl. Math. Comput. 260, 397–411 (2015)

    MathSciNet  Google Scholar 

  45. Bell, E.T.: Exponential polynomials. Ann. Math. 35(2), 258–277 (1934)

  46. Gilson, C., Lambert, F., Nimmo, J., Willox, R.: On the combinatorics of the Hirota D-operators. Proc. R. Soc. Lond. A 452, 223–234 (1945)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to Prof. Liming Ling for his enthusiastic guidance. The work was supported by the National Natural Science foundation of China (No. 11571116)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengrong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, Z. Riemann theta solutions and their asymptotic property for a (3\(+\)1)-dimensional water wave equation. Nonlinear Dyn 87, 1069–1080 (2017). https://doi.org/10.1007/s11071-016-3098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3098-1

Keywords

Navigation