Skip to main content
Log in

Adaptive fuzzy synergetic control for nonlinear hysteretic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear hysteretic behavior exists in many systems and makes their analysis and control an arduous task. Based on adaptive fuzzy synergetic control strategy, this paper deals with the control of a class of nonlinear systems preceded by an unknown backlash nonlinearity. Fuzzy logic systems are used to estimate the unknown nonlinear behaviors of the system, and a novel adaptive fuzzy controller is designed via synergetic control theory. Stability is proven, theoretically, in the sense of bounded closed-loop signals, and a tracking error converges to the origin. Simulation results validate the proposed approach and give an overview on the achieved tracking performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nouicer, A., Nouicer, E., Feliachi, M.: A neural network for incorporating the thermal effect on the magnetic hysteresis of the 3F3 material using the Jiles–Atherton model. J. Magn. Magn. Mater. 373, 240–243 (2015)

    Article  Google Scholar 

  2. Garca-Plaza, M., Serrano-Jimnez, D., Eloy-Garca Carrasco, J., Alonso-Martnez, J.: A Ni–Cd battery model considering state of charge and hysteresis effects. J. Power Sources 275, 595–604 (2015)

    Article  Google Scholar 

  3. De la Barrire, O., Ragusa, C., Appino, C., Fiorillo, F., LoBue, M., Mazaleyrat, F.: A computationally effective dynamic hysteresis model taking into account skin effect in magnetic laminations. Phys. B 435, 80–83 (2014)

    Article  Google Scholar 

  4. Ma, L., Shen, Y., Li, J., Zhao, X.: A modified HO-based model of hysteresis in piezoelectric actuators. Sens. Actuators A Phys. 220, 316–322 (2014)

    Article  Google Scholar 

  5. Wang, C.H., Huang, D.Y.: A new intelligent fuzzy controller for nonlinear hysteretic electronic throttle in modern intelligent automobiles. IEEE Trans. Ind. Electron. 60(6), 2332–2345 (2013)

    Article  Google Scholar 

  6. Laudani, A., Fulginei, F.R., Salvini, A.: Comparative analysis of Bouc–Wen and Jiles–Atherton models under symmetric excitations. Phys. B 435, 134–137 (2014)

    Article  Google Scholar 

  7. Dong, Y., Hu, H., Wang, H.: Identification and experimental assessment of two-input Preisach model for coupling hysteresis in piezoelectric stack actuators. Sens. Actuators A Phys. 220, 92–100 (2014)

    Article  Google Scholar 

  8. Li, Z., Su, C.Y., Chai, T.: Compensation of hysteresis nonlinearity in magnetostrictive actuators with inverse multiplicative structure for Preisach model. IEEE Trans. Autom. Sci. Eng. 11(2), 613–619 (2014)

    Article  Google Scholar 

  9. Fang, L., Wang, J., Zhang, Q.: Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by Preisach model. Nonlinear Dyn. 79, 1257–1273 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hui, C., Yonghong, T., Xingpeng, Z., Ruili, D., Yahong, Z.: Identification of dynamic hysteresis based on Duhem model. In: 4th International Conference on Intelligent Computation Technology and Automation, pp. 810–814. Shenzhen, Guangdong (2011)

  11. Ortiz, G.A., Alvarez, D.A., Bedoya-Ruz, D.: Identification of Bouc–Wen type models using the transitional Markov chain Monte Carlo method. Comput. Struct. 146, 252–269 (2015)

    Article  Google Scholar 

  12. Baradaran-nia, M., Alizadeh, G., Khanmohammadi, S., Azar, B.F.: Backstepping-based Lyapunov redesign control of hysteretic single degree-of-freedom structural systems. Nonlinear Dyn. 73, 1165–1186 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rochdi, Y., Giri, F., Chaoui, F.Z., Rodellar, J.: Parametric identification of nonlinear hysteretic systems. Nonlinear Dyn. 58, 393–404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ikhouane, F., Hurtado, J.E., Rodellar, J.: Variation of the hysteresis loop with the Bouc–Wen model parameters. Nonlinear Dyn. 48, 361–380 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ikhouane, F., Rodellar, J.: On the hysteretic Bouc–Wen model. Nonlinear Dyn. 42, 63–78 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, S., Su, C.Y., Li, Z.: Robust adaptive inverse control of a class of nonlinear systems with Prandtl–Ishlinskii hysteresis model. IEEE Trans. Autom. Control 59(8), 2170–2175 (2014)

    Article  MathSciNet  Google Scholar 

  17. Hedegrd, M., Wik, T.: Non-parametric convex identification of extended generalized Prandtl–Ishlinskii models. Automatica 50, 465–474 (2014)

    Article  MathSciNet  Google Scholar 

  18. Tu, J.Y., Lin, P.Y., Cheng, T.Y.: Continuous hysteresis model using Duffing-like equation. Nonlinear Dyn. 80(1), 1039–1049 (2015)

  19. Ma, Q., Cui, G., Jiao, T.: Neural-network-based adaptive tracking control for a class of pure-feedback stochastic nonlinear systems with backlash-like hysteresis. Neurocomputing 144, 501–508 (2014)

    Article  Google Scholar 

  20. Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis Bouc–Wen model, a survey. Arch. Comput. Methods Eng. 16, 161–188 (2009)

    Article  MATH  Google Scholar 

  21. Hassani, V., Tjahjowidodo, T., Do, T.N.: A survey on hysteresis modeling, identification and control. Mech. Syst. Signal Process. 49, 209–233 (2014)

    Article  Google Scholar 

  22. Tao, G., Kokotovic, P.V.: Adaptive control of plants with unknown hystereses. IEEE Trans. Autom. Control 40(2), 200–212 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rosenbaum, S., Ruderman, M., Ströhla, T., Bertram, T.: Use of Jiles–Atherton and Preisach hysteresis models for inverse feed-forward control. IEEE Trans. Magn. 46(12), 3984–3989 (2010)

    Article  Google Scholar 

  24. Al Janaideh, M., Su, C.Y., Rakheja, S.: Inverse compensation error of the Prandtl–Ishlinskii model. In: 51st IEEE Conference on Decision and Control, pp. 1597–1602. Maui, Hawaii, 10–13 Dec (2012)

  25. Al Janaideh, M.: About the output of the in verse compensation of the Prandtl–Ishlinskii model. In: American Control Conference, pp. 247–252. Washington, DC, USA, 17–19 June (2013)

  26. Liu, S., Su, C.Y.: Inverse error analysis and adaptive output feedback control of uncertain systems preceded with hysteresis actuators. IET Control Theory Appl. 8(17), 1824–1832 (2014)

    Article  MathSciNet  Google Scholar 

  27. Habineza, D., Rakotondrabe, M., Gorrec, Y.L.: Modeling, identification and feedforward control of multivariable hysteresis by combining Bouc–Wen equations and the inverse multiplicative structure. In: American Control Conference, pp. 4771–4777. Portland, Oregon, 4–6 June (2014)

  28. Su, C.Y., Stepanenko, Y., Svoboda, J., Leung, T.P.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 45(12), 2427–2432 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Feng, Y., Hong, H., Rabbath, C.A., Su, C.Y.: Robust adaptive control law for a class of nonlinear systems with differential equation-based hysteresis-Duhem representation. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1339–1344. Montral, Canada, 6–9 July (2010)

  30. Zhang, Z., Xu, S., Zhang, B.: Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity. IEEE Trans. Autom. Control 59(5), 1336–1341 (2014)

    Article  MathSciNet  Google Scholar 

  31. Liu, Z., Lai, G., Zhang, Y., Chen, X., Philip Chen, C.L.: Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2129–2140 (2014)

    Article  Google Scholar 

  32. Liu, Z., Lai, G., Zhang, Y., Chen, X., Philip Chen, C.L.: Adaptive neural output feedback control of output-constrained nonlinear systems with unknown output nonlinearity. IEEE Trans. Neural Netw. Learn. Syst. 26(8), 1789–1802 (2015)

    Article  MathSciNet  Google Scholar 

  33. Liu, Y.J., Tong, S., Philip Chen, C.L., Li, D.J.: Neural controller design-based adaptive control for nonlinear MIMO systems with unknown hysteresis inputs. IEEE Trans. Cybern. 46(1), 9–19 (2016)

  34. Su, C.Y., Oya, M., Hong, H.: Stable adaptive fuzzy control of nonlinear systems preceded by unknown backlash-like hysteresis. IEEE Trans. Fuzzy Syst. 11(1), 1–8 (2003)

    Article  Google Scholar 

  35. Ren, B., San, P.P., Ge, S.S., Lee, T.H.: Adaptive dynamic surface control for a class of strict-feedback nonlinear systems with unknown backlash-like hysteresis. In: American Control Conference, pp 4482–4487. Hyatt Regency Riverfront, St. Louis, MO (2009)

  36. Zhou, J., Zhang, C., Wen, C.: Robust adaptive output control of uncertain nonlinear plants with unknown backlash nonlinearity. IEEE Trans. Autom. Control 52(3), 503–509 (2007)

    Article  MathSciNet  Google Scholar 

  37. Zhou, J., Wen, C., Zhang, Y.: Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 49(10), 1751–1757 (2004)

    Article  MathSciNet  Google Scholar 

  38. Liu, Y., Lin, Y.: Global adaptive output feedback tracking for a class of non-linear systems with unknown backlash-like hysteresis. IET Control Theory Appl. 8(11), 927–936 (2013)

    Article  MathSciNet  Google Scholar 

  39. Li, Y., Tong, S., Li, T.: Adaptive fuzzy output feedback control of uncertain nonlinear systems with unknown backlash-like hysteresis. Inf. Sci. 198, 130–146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, H., Chen, B., Liu, K., Liu, X., Lin, C.: Adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 947–958 (2014)

    Article  Google Scholar 

  41. Mousavi, S.H., Sahraei, B.R., Noroozi, N.: Output feedback controller for hysteretic time-delayed MIMO nonlinear systems, an \(H^\infty \) based indirect adaptive interval type-2 fuzzy approach. Nonlinear Dyn. 68, 63–76 (2012)

  42. Wang, H.Q., Chen, B., Lin, C.: Approximation-based adaptive fuzzy control for a class of non-strict-feedback stochastic nonlinear systems. Sci. China Inf. Sci. 57(3), 1–16 (2014)

    MathSciNet  Google Scholar 

  43. Wang, H.Q., Chen, B., Liu, X., Liu, K., Lin, C.: Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints. IEEE Trans. Cybern. 43(6), 2093–2104 (2013)

    Article  Google Scholar 

  44. Wang, H.Q., Liu, X., Liu, K., Lin, C., Karimi, H.R.: Approximation-based adaptive fuzzy tracking control for a class of nonstrict-feedback stochastic nonlinear time-delay systems. IEEE Trans. Fuzzy Syst. 23(5), 1746–1760 (2015)

    Article  Google Scholar 

  45. Kolesnikov, A., Veselov, G., Kolesnikov, A.: Modern Applied Control Theory: Synergetic Approach in Control Theory. TRTU, Moscow (2000)

    Google Scholar 

  46. Ni, J., Liu, C., Liu, K., Pang, X.: Variable speed synergetic control for chaotic oscillation in power system. Nonlinear Dyn. 78, 681–690 (2014)

    Article  Google Scholar 

  47. Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28, 15–33 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Guesmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebai, A., Guesmi, K. & Hemici, B. Adaptive fuzzy synergetic control for nonlinear hysteretic systems. Nonlinear Dyn 86, 1445–1454 (2016). https://doi.org/10.1007/s11071-016-3088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3088-3

Keywords

Navigation