Advertisement

Nonlinear Dynamics

, Volume 87, Issue 2, pp 879–894 | Cite as

Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads

Original Paper

Abstract

We present a generalized shear deformation theory in combination with isogeometric (IGA) approach for nonlinear transient analysis of smart piezoelectric functionally graded material (FGM) plates. The nonlinear transient formulation for plates is formed in the total Lagrange approach based on the von Kármán strains, which includes thermo-piezoelectric effects, and solved by Newmark time integration scheme. The electric potential through the thickness of each piezoelectric layer is assumed to be linear. The material properties vary through the thickness of FGM according to the rule of mixture and the Mori–Tanaka schemes. Various numerical examples are presented to demonstrate the effectiveness of the proposed method.

Keywords

Isogeometric analysis (IGA) Nonlinear transient analysis Sensors and actuators Thermo-electro-mechanical load FGM plates 

Notes

Acknowledgments

H. Nguyen-Xuan would like to thank the Alexander von Humboldt Foundation for granting the Georg Forster Research Award.

References

  1. 1.
    Koizumi, M.: The concept of FGM. Ceram. Trans. Function. Graded Mater. 34, 3–10 (1993)Google Scholar
  2. 2.
    Wang, Z., Chen, S., Han, W.: The static shape control for intelligent structures. Finite Elem. Anal. Des. 26, 303–314 (1997)CrossRefMATHGoogle Scholar
  3. 3.
    Takagi, K., Li, J.F., Yokoyama, S., Watanabe, R.: Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators. J. Eur. Ceram. Soc. 23, 1577–1583 (2003)CrossRefGoogle Scholar
  4. 4.
    Praveen, G.N., Reddy, J.N.: Nonlinear transient thermo elastic analysis of functionally graded ceramic-metal plates. Int. J. Solids Struct. 35, 4457–4476 (1998)CrossRefMATHGoogle Scholar
  5. 5.
    Zhao, X., Liew, K.M.: Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method. Comput. Methods Appl. Mech. Eng. 198, 2796–2811 (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Phung-Van, P., Nguyen-Thoi, T., Luong-Van, H., Lieu-Xuan, Q.: Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C0-HSDT. Comput. Methods Appl. Mech. Eng. 270, 15–36 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Aliaga, J.W., Reddy, J.N.: Nonlinear thermoelastric analysis of functionally graded plates using the third-order shear deformation theory. Int. J. Comput. Eng. Sci. 5, 753–779 (2004)CrossRefGoogle Scholar
  8. 8.
    Phung-Van, P., Nguyen-Thoi, T., Bui-Xuan, T., Lieu-Xuan, Q.: A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the C0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates. Comput. Mater. Sci. 96, 549–558 (2015)CrossRefGoogle Scholar
  9. 9.
    Reddy, J.N., Kim, J.: A nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos. Struct. 94, 1128–1143 (2012)CrossRefGoogle Scholar
  10. 10.
    Shankara, C.A., Iyegar, N.G.R.: A \(\text{ C }^{0}\) element for the free vibration analysis of laminated composite plates. J. Sound Vib. 191, 721–738 (1996)CrossRefGoogle Scholar
  11. 11.
    Nguyen-Thoi, T., Rabczuk, T., Lam-Phat, T., Ho-Huu, V., Phung-Van, P.: Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3). Theor. Appl. Fract. Mech. 72, 150–163 (2014)CrossRefGoogle Scholar
  12. 12.
    Luong-Van, H., Nguyen-Thoi, T., Liu, G.R., Phung-Van, P.: A cell-based smoothed finite element method using three-node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic response of laminated composite plates on viscoelastic foundation. Eng. Anal. Bound. Elem. 42, 8–19 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Phung-Van, P., Nguyen-Thoi, T., Luong-Van, H., Thai-Hoang, C., Nguyen-Xuan, H.: A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise deformation theory for dynamic response of composite plates resting on viscoelastic foundation. Comput. Methods Appl. Mech. Eng. 272, 138–159 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Phung-Van, P., Thai, C.H., Nguyen-Thoi, T., Nguyen-Xuan, H.: Static and free vibration analyses of composite and sandwich plates by an edge-based smoothed discrete shear gap method (ES-DSG3) using triangular elements based on layerwise theory. Compos. B: Eng. 60, 227–238 (2014)CrossRefGoogle Scholar
  15. 15.
    Phung-Van, P., Luong-Van, H., Nguyen-Thoi, T., Nguyen-Xuan, H.: A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) based on the C0-type higher-order shear deformation theory for dynamic responses of Mindlin plates on viscoelastic foundations subjected to a moving sprung vehicle. Int. J. Numer. Meth. Eng. 98(13), 988–1014 (2014)CrossRefMATHGoogle Scholar
  16. 16.
    He, X.Q., Ng, T.Y., Sivashanker, S., Liew, K.M.: Active control of FGM plates with intergrated piezoelectric sensors and actuators. Int. J. Solids Struct. 38, 1641–1655 (2001)CrossRefMATHGoogle Scholar
  17. 17.
    Liew, K.M., He, X.Q., Ng, T.Y., Kitipornchai, S.: Finite element piezothermo-elasticity analysis and active control of FGM plates with integrated piezoelectric sensors and actuators. Comput. Mech. 31, 350–358 (2003)MATHGoogle Scholar
  18. 18.
    Reddy, J.N., Cheng, Z.Q.: Three-dimensional solutions of smart functionally graded plates. J. Appl. Mech. ASME 68, 234–241 (2001)CrossRefMATHGoogle Scholar
  19. 19.
    Huang, X.L., Shen, H.S.: Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments. J. Sound Vib. 289, 25–53 (2006)CrossRefGoogle Scholar
  20. 20.
    Yang, J., Kitipornchai, S., Liew, K.M.: Non-linear analysis of thermo-electro-mechanical behavior of shear deformable FGM plates with piezoelectric actuators. Int. J. Numer. Meth. Eng. 59, 1605–32 (2004)CrossRefMATHGoogle Scholar
  21. 21.
    Butz, A., Klinkel, S., Wagner, W.: A geometrically and materially non-linear piezoelectric three-dimensional-beam finite element formulation including warping effects. Int. J. Numer. Meth. Eng. 76, 601–635 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Panda, S., Ray, M.C.: Nonlinear analysis of smart functionally graded plates integrated with a layer of piezoelectric fiber reinforced composite. Smart Mater. Struct. 15, 1595–1604 (2006)CrossRefGoogle Scholar
  23. 23.
    Behjat, B., Khoshravan, M.R.: Geometrically nonlinear static and free vibration analysis of functionally graded piezoelectric plates. Compos. Struct. 94, 874–882 (2012)CrossRefGoogle Scholar
  24. 24.
    Yiqi, M., Yiming, F.: Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate. J. Sound Vib. 329, 2015–2028 (2010)CrossRefGoogle Scholar
  25. 25.
    Vahid, F., Abdolreza, O., Peyman, Y.: Nonlinear free and forced vibration behavior of functionally graded plate with piezoelectric layers in thermal environment. Compos. Struct. 93, 2310–2321 (2011)CrossRefGoogle Scholar
  26. 26.
    D’Annibale, F., Rosi, G., Luongo, A.: Piezoelectric control of Hopf bifurcations: A non-linear discrete case study. Int. J. Non-Linear Mech. 80, 160–169 (2016)CrossRefGoogle Scholar
  27. 27.
    D’Annibale, F., Rosi, G., Luongo, A.: Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces. Meccanica 50(3), 825–839 (2015)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    D’Annibale, F., Rosi, G., Luongo, A.: On the failure of the “Similar Piezoelectric Control” in preventing loss of stability by nonconservative positional forces. Zeitschrift für angewandte Mathematik and Physik 66(4), 1949–1968 (2015)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Phung-Van, P., De Lorenzis, L., Chien, Thai H., Abdel-Wahab, M., Nguyen-Xuan, H.: Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements. Comput. Mater. Sci. 96, 496–505 (2015)Google Scholar
  30. 30.
    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Cazzani, A., Malagu, M., Turco, E.: Isogeometric analysis of plane curved beams. Math. Mech. Solids (2014). doi: 10.1177/1081286514531265
  32. 32.
    Cazzani, A., Malagu, M., Turco, E., Stochino, F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids 21, 182–209 (2016)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Cazzani, A., Malagu, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Contin. Mech. Thermodyn. 28, 139–156 (2016)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Cuomo, M., Contraffatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Aristodemo, M.: A high continuity finite element model for two-dimensional elastic structures. Comput. Struct. 21, 987–993 (1985)CrossRefMATHGoogle Scholar
  38. 38.
    Bilotta, A., Formica, G., Turco, E.: Performance of a high-continuity finite element in three-dimensional elasticity. Int. J. Numer. Methods Biomed. Eng. 26, 1155–1175 (2010)CrossRefMATHGoogle Scholar
  39. 39.
    Thai, H., Chien, Zenkour, A.M., Abdel-Wahab, A., Nguyen-Xuan, H.: A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis. Compos. Struct. 139, 77–95 (2016)Google Scholar
  40. 40.
    Thai, H., Chien, Kulasegaram, S., Loc, Tran V., Nguyen-Xuan, H.: Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach. Compos. Struct. 141, 94–112 (2014)Google Scholar
  41. 41.
    Nguyen, V.P., Kerfriden, P., Brino, M., Bordas, S.P.A., Bonisoli, E.: Nitsche’s method for two and three dimensional NURBS patch coupling. Comput. Mech. 53, 1163–1182 (2013)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Thai, H., Chien, Ferreira, A.J.M., Abdel-Wahab, A., Nguyen-Xuan, H.: A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis. Acta Mech. 227(5), 1225–1250 (2016)Google Scholar
  43. 43.
    Nguyen, V.P., Nguyen-Xuan, H.: High-order B-splines based finite elements for delamination analysis of laminated composites. Compos. Struct. 102, 261–275 (2013)CrossRefGoogle Scholar
  44. 44.
    Phung-Van, P., Abdel-Wahab, M., Liew, K.M., Bordas, S.P.A., Nguyen-Xuan, H.: Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Compos. Struct. 123, 137–149 (2015)CrossRefGoogle Scholar
  45. 45.
    Loc, Tran V., Phung-Van, P., Lee, J., Abdel-Wahab, A., Nguyen-Xuan, H.: Isogeometric analysis for nonlinear thermomechanical stability of functionally graded plates. Compos. Struct. 140, 655–667 (2016)CrossRefGoogle Scholar
  46. 46.
    Nguyen-Thanh, N., Kiendl, J., Nguyen-Xuan, H., Wüchner, R., Bletzinger, K.U., Bazilevs, Y., Rabczuk, T.: Rotation free isogeometric thin shell analysis using PHT-splines. Comput. Methods Appl. Mech. Eng. 200, 3410–3424 (2011)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Kapoor, H., Kapania, R.: Geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates. Compos. Struct. 94, 3434–3447 (2012)CrossRefGoogle Scholar
  48. 48.
    Le-Manh, T., Lee, J.: Postbuckling of laminated composite plates using NURBS-based isogeometric analysis. Compos. Struct. 109, 286–293 (2014)CrossRefGoogle Scholar
  49. 49.
    Phung-Van, P., Nguyen, L.B., Tran, L.V., Dinh, T.D., Thai, C.H., Bordas, S.P.A., Abdel-Wahab, M., Nguyen-Xuan, H.: An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. Int. J. Non-Linear Mech. 76, 190–202 (2015)CrossRefGoogle Scholar
  50. 50.
    Hosseini, S., Joris, J.C., Remmersa, Clemens, V., Verhoosela, René de Borst.: An isogeometric solid-like shell element for non-linear analysis. Int. J. Numer. Method Eng. 95, 238–256 (2013)Google Scholar
  51. 51.
    Hosseini, S., Joris, J.C., Remmers, Clemens, V., Verhoosel, René de Borst.: An isogeometric continuum shell element for non-linear analysis. Comput. Methods Appl. Mech. Eng. 271, 1–22 (2014)Google Scholar
  52. 52.
    Oliver, W., Utz, W., Bernd, S.: Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations. Nonlinear Dyn. 72, 813–835 (2013)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Method Eng. 47, 663–684 (2000)CrossRefMATHGoogle Scholar
  54. 54.
    Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)Google Scholar
  55. 55.
    Soldatos, K.P.: A transverse shear deformation theory for homogenous monoclinic plates. Acta Mech. 94, 195–220 (1992)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29, 745–752 (1991)CrossRefMATHGoogle Scholar
  57. 57.
    Aydogdu, M.: A new shear deformation theory for laminated composite plates. Compos. Struct. 89, 94–101 (2009)CrossRefGoogle Scholar
  58. 58.
    Nguyen-Xuan, H., Thai, H., Chien, Nguyen-Thoi, T.: Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory. Compos. B. Eng. 55, 558–574 (2013)Google Scholar
  59. 59.
    Fung, Y.C.: Foundation of Solid Mechanics. Prentice Hall, New Jersey (1965)Google Scholar
  60. 60.
    Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford (2004)CrossRefMATHGoogle Scholar
  61. 61.
    Wang, S.Y., Quek, S.T., Ang, K.K.: Vibration control of smart piezoelectric composite plates. Smart Mater. Struct. 10, 637–644 (2001)CrossRefGoogle Scholar
  62. 62.
    Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum press, New York (1969)CrossRefGoogle Scholar
  63. 63.
    Les Piegl, Wayne Tiller: The NURBS book. Springer 2nd edition, Germany (1997)Google Scholar
  64. 64.
    Phung-Van, P., Nguyen-Thoi, T., Le-Dinh, T., Nguyen-Xuan, H.: Static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3). Smart Mater. Struct. 22, 095026 (2013)CrossRefGoogle Scholar
  65. 65.
    Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. ASCE 85, 67–94 (1959)Google Scholar
  66. 66.
    Reddy, J.N.: Geometrically nonlinear transient analysis of laminated composite plates. AIAA J. 21, 621–629 (1983)CrossRefMATHGoogle Scholar
  67. 67.
    Bathe, K.J.: Finite Element Procedures. Prentice-Hall, New Jersey (1996)MATHGoogle Scholar
  68. 68.
    Pica, A., Wood, R.D., Hinton, E.: Finite element analysis of geometrically nonlinear plate behaviour using a Mindlin formulation. Comput. Struct. 11, 203–215 (1980)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Chen, J., Dawe, D.J., Wang, S.: Nonlinear transient analysis of rectangular composite laminated plates. Compos. Struct. 49, 129–139 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Electrical Energy, Systems and Automation, Faculty of Engineering and ArchitectureGhent UniversityZwijnaardeBelgium
  2. 2.Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  3. 3.Center for Interdisciplinary Research in Technology (CIRTech)HUTECH UniversityHo Chi Minh CityVietnam
  4. 4.Department of Architectural EngineeringSejong UniversitySeoulRepublic of Korea
  5. 5.Division of Computational MechanicsTon Duc Thang UniversityHo Chi Minh CityVietnam
  6. 6.Faculty of Civil EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  7. 7.Soete Laboratory, Faculty of Engineering and ArchitectureGhent UniversityZwijnaardeBelgium

Personalised recommendations