Skip to main content
Log in

Exact and soliton solutions to nonlinear transmission line model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A nonlinear transmission line (NLTL) is comprised of a transmission line periodically loaded with varactors, where the capacitance nonlinearity arises from the variable depletion layer width, which depends both on the DC and AC voltages of the propagating wave. An equivalent circuit model of NLTL is discussed analytically, in this article, and different type of solutions are celebrated. The improved extended tanh-function method has been applied successfully to extract the solutions. The obtained solutions are solitary wave solutions, singular periodic solutions, singular soliton solutions, Jacobi elliptic doubly periodic type solutions and Weierstrass elliptic doubly periodic type solutions. It is a very convenient tool to study the propagation of electrical solitons which propagate in the form of voltage waves in nonlinear dispersive media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arnous, A.H., Mirzazadeh, M., Eslami, M.: Exact solutions of the Drinfel’d–Sokolov–Wilson equation using the Bäcklund transformation of Riccati equation and trial function approach. Pramana J. Phys. 86(6), 1153–1160 (2016)

    Article  Google Scholar 

  2. Mirzazadeh, M., Eslami, M., Arnous, A.H.: Dark optical solitons of Biswas–Milovic equation with dual-power law nonlinearity. Eur. Phys. J. Plus 130(4), 1–7 (2015)

    Google Scholar 

  3. Younis, M., Rizvi, S.T.R., Ali, S.: Analytical and soliton solutions: lonlinear model of nanobioelectronics transmission lines. Appl. Math. Comput. 265, 994–1002 (2015)

    MathSciNet  Google Scholar 

  4. Sekulic, D.L., Sataric, M.V., Zivanov, M.B.: Symbolic computation of some new nonlinear partial differential equations of nanobiosciences using modified extended tanh-function method. Appl. Math. Comput. 218, 3499–3506 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Sekulic, D.L., Sataric, M.V.: Protein-based nanobioelectronics transmission lines. In: Proceedings of the 28th International Conference on Microelectronics (MIEL12), IEEE, pp. 215–218. Nis (2012)

  6. Sardar, A., Husnine, S.M., Rizvi, S.T.R., Younis, M., Ali, K.: Multiple travelling wave solutions for electrical transmission line model. Nonlin. Dyn. 82(3), 1317–1324 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Younis, M., Ali, S.: Solitary wave and shock wave solitons to the transmission line model for nano-ionic currents along microtubules. Appl. Math. Comput. 246, 460–463 (2014)

    MathSciNet  MATH  Google Scholar 

  8. El-Borai, M.M.: Exact solutions for some nonlinear fractional parabolic fractional partial differential equations. J Appl. Math. Comput. 206, 141–153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. El-Borai, M.M., Zaghrout, A.A., Elshaer, A.L.: Exact solutions for nonlinear partial differential equations by using the extended multiple Riccati equations expansion method. Int. J. Res. Rev. Appl. Sci. 9(3), 370–381 (2011)

  10. Afshari, E., Hajimiri, A.: Nonlinear transmission lines for pulse shaping in silicon. IEEE J. Solid State Circuits 40(3), 744–752 (2005)

    Article  Google Scholar 

  11. Mostafa, S.I.: Analytical study for the ability of nonlinear transmission lines to generate solitons. Chaos Solitons Fract. 39, 2125–2132 (2009)

    Article  Google Scholar 

  12. Malwe, B.H., Gambo, B., Doka, S.Y., Kofane, T.C.: Soliton wave solutions for the nonlinear transmission line using Kudryashov method and \((G^{\prime }/G)\)-expansion method. Appl. Math. Comput. 239, 299–309 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Kengne, E., Lakhssassi, A.: Analytical studies of soliton pulses along two-dimensional coupled nonlinear transmission lines. Chaos Solitons Fract. 73, 191–201 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kengne, E., Malomed, B.A., Chui, S.T., Liu, W.M.: Solitary signals in electrical nonlinear transmission line. J. Math. Phys. 48, 013508 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, Z., Hon, B.Y.C.: An improved modified extended tanh function method. Z. Naturforsch 61, 103–115 (2006)

    Article  MATH  Google Scholar 

  16. Sekulic, D.L., Satoric, M.V., Zivanov, M.B., Bajic, J.S.: Soliton-like pulses along electrical nonlinear transmission line. Elecron. Electr. Eng. 121, 53–58 (2012)

    Google Scholar 

  17. Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridg University Press, New York (1991)

    Book  MATH  Google Scholar 

  18. Vakhnenko, V.O., Parkes, E.J., Morrison, A.J.: A Backlund transformation and the inverse scattering transform method for the generalized Vakhnenko equation. Chaos Solitons Fract. 17, 683 (2003)

    Article  MATH  Google Scholar 

  19. Hirota, R.: Direct method of finding exact solutions of nonlinear evolution equations. In: Bulloygh, R., Coudrey, P. (eds.) Bäcklund Transformation. Springer, Berlin (1980)

    Google Scholar 

  20. Jawad, M.A.M., Petkovic, M.D., Biswas, A.: Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217, 869–877 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Zayed, E.M.E., Arnous, A.H.: Exact traveling wave solutions of nonlinear PDEs in mathematical physics using the modified simple equation method. Appl. Appl. Math. 8(2), 553–572 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Wang, M.L., Li, X., Zhang, J.: The \(( G ^{\prime }/G )\)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  MathSciNet  Google Scholar 

  23. Liu, C.S.: Trial equationmethod to nonlinear evolution equations with rank inhomogeneous: mathematical discussions and its applications. Commun. Theor. Phys. 45, 219–223 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Arnous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Borai, M.M., El-Owaidy, H.M., Ahmed, H.M. et al. Exact and soliton solutions to nonlinear transmission line model. Nonlinear Dyn 87, 767–773 (2017). https://doi.org/10.1007/s11071-016-3074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3074-9

Keywords

Navigation