Skip to main content
Log in

Hopf bifurcation control of the M–L neuron model with type I

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many neurological diseases are known to be caused by bifurcations induced by a change in the values of one or more regulating parameter of nervous systems. The bifurcation control may have potential applications in the diagnosis and therapy of these dynamical diseases. In this paper, a washout filter-aided dynamic feedback controller composed of the linear term and the nonlinear cubic term is employed to control the onset of Hopf bifurcation in the Morris–Lecar (M–L) neuron model with type I. It is shown that the linear term determines the location of the Hopf bifurcation, while the nonlinear cubic term regulates the criticality of the Hopf bifurcation, preventing it from occurring in a certain range of the externally applied current. The relationships among the externally applied current, the linear control gain and the reciprocal of the filter time constant are further systematically analyzed, which help to make the best choice from the feasible parameter space to achieve our control task. Simulation results are provided to illustrate the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dimitrov, A., Lazar, A., Victor, J.: Information theory in neuronscience. J. Comput. Neurosci. 30(1), 1–5 (2011)

    Article  Google Scholar 

  2. Nguyen, L., Hong, K.: Hopf bifurcation control via a dynamic state-feedback control. Phys. Lett. A 376(4), 442–446 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ding, L., Hou, C.: Stabilizing control of Hopf bifurcation in the Hodgkin–Huxley model via washout filter with linear control term. Nonlinear Dyn. 60(1–2), 131–139 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Xie, Y., Chen, L., Kang, Y., Aihara, K.: Controlling the onset of Hopf bifurcation in the Hodgkin–Huxley model. Phys. Rev. E 77(6), 061921 (2008)

    Article  MathSciNet  Google Scholar 

  5. Nguyen, L., Hong, K.: Synchronization of coupled chaotic FitzHugh–Nagumo neurons via Lyapunov functions. Math. Comput. Simul. 82(4), 590–603 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ueta, T., Chen, G.: On synchronization and control of coupled Wilson–Cowan neural oscillators. Int. J. Bifurc. Chaos 13(1), 163–175 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu, H.J., Tong, W.J.: Chaotic control of Hindmarsh–Rose neuron by delayed self-feedback. Acta Phys. Sin. 58, 2977–2982 (2009)

    MATH  Google Scholar 

  8. Shi, M., Wang, Z.: Abundant bursting patterns of a fractional-order Morris–Lecar neuron model. Commun. Nonlinear Sci. Numer. Simul. 19(6), 1956–1969 (2014)

    Article  MathSciNet  Google Scholar 

  9. Wang, H., Lu, Q., Wang, Q.: Bursting and synchronization transition in the coupled modified M–L neurons. Commun. Nonlinear Sci. Numer. Simul. 13(8), 1668–1675 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58(2), 2038–2045 (2015)

    Article  Google Scholar 

  11. Qin, H.X., Wu, Y., Wang, C.N., Ma, J.: Emitting waves from defects in network with autapses. Commun. Nonlinear Sci. Numer. Simul. 23(1), 164–174 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, H.T., Chen, Y.: Firing dynamics of an autaptic neuron. Chin. Phys. B 24(12), 128709 (2015)

    Article  Google Scholar 

  13. Yao, C., Ma, J., Li, C., He, Z.: The effect of process delay on dynamical behaviors in a self-feedback nonlinear oscillator. Common. Nonlinear Sci. Numer. Simul. 39, 99–107 (2016)

    Article  MathSciNet  Google Scholar 

  14. Wang, H.T., Ma, J., Chen, Y.L., Chen, Y.: Effect of an autapse on the firing pattern transition in a bursting neuron. Common. Nonlinear Sci. Numer. Simul. 19(9), 3242–3254 (2014)

    Article  MathSciNet  Google Scholar 

  15. Lü, M., Wang, C.N., Ren, G.D., Ma, J., Song, X.L.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Article  Google Scholar 

  16. Milton, J., Jung, P.: Brain defibrillators: synopsis, problems and future directions. In: Epilepsy as a Dynamic Disease. Springer, Berlin Heidelberg (2003)

  17. Chen, G., Moiola, J., Wang, H.: Bifurcation control: theories, methods and applications. Int. J. Bifurc. Chaos 10(3), 511–548 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Abed, E., Fu, J.: Local feedback stabilization and bifurcation control, I. Hopf bifurcation. Syst. Control Lett. 7(1), 11–17 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liao, X.F., Li, S.W., Wong, K.W.: Hopf bifurcation on a two-neuron system with distributed delays: a frequency domain approach. Nonlinear Dyn. 31(3), 299–326 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yu, P., Chen, G.R.: Hopf bifurcation control using nonlinear feedback with polynomial functions. Int. J. Bifurc. Chaos 14(5), 1683–1704 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brandt, M.E., Chen, G.R.: Bifurcation control of two nonlinear models of cardiac activity. IEEE Trans. Circuits Syst. I 44(10), 1031–1034 (1997)

    Article  Google Scholar 

  22. Jiang, J., Song, Y.L.: Delay-induced Bogdanov–Takens bifurcation in a Leslie–Gower predator-prey model with nonmonotonic functional response. Commun. Nonlinear Sci. Numer. Simul. 19(7), 2454–2465 (2014)

    Article  MathSciNet  Google Scholar 

  23. Xiao, M., Ho, D., Cao, J.: Time-delayed feedback control of dynamical small-world networks at Hopf bifurcation. Nonlinear Dyn. 58(1–2), 319–344 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tesi, A., Abed, E., Genesio, R., Wang, H.: Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics. Automatica 32(9), 1255–1271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grace, A.A., Bunney, B.S., Moore, H., Todd, C.L.: Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci. 20(1), 31–37 (1997)

    Article  Google Scholar 

  26. Dovzhenok, A., Kuznetsov, A.S.: Exploring neuronal bistability at the depolarization block. Plos One 7(8), 324–325 (2012)

    Article  Google Scholar 

  27. Gu, H.G., Pan, B.B.: Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors. Front. Comput. Neurosci. doi:10.3389/fncom.2015.00108

  28. Wang, H., Abed, E.: Bifurcation control of a chaotic system. Automatica 31(9), 1213–1226 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, Z., Yu, P.: Controlling and anti-controlling Hopf bifurcations in discrete maps using polynomial functions. Chaos Solitons Fractals 26(4), 1231–1248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nguyen, L., Hong, K., Park, S.: Bifurcation control of the Morris-Lecar neuron model via a dynamic state-feedback control. Biol. Cybern. 106(10), 587–594 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nguyen L., Hong K.: Analysis and control of the bifurcation in a Morris–Lecar neuron via a washout filter-aided dynamic control law. In: 11th International Conference on Control, Automation and Systems (ICCAS), pp. 342–347. (2011)

  32. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  Google Scholar 

  33. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  34. Jia, B., Gu, H.G.: Identifying type I excitability using dynamics of stochastic neural firing patterns. Cogn. Neurodyn. 6(6), 485–497 (2012)

    Article  Google Scholar 

  35. Jia, B., Gu, H.G., Li, Y.Y.: Coherence-resonance-induced neuronal firing near a saddle-node and homoclinic bifurcation corresponding to type-I excitability. Chin. Phys. Lett. 28(9), 90507 (2011)

    Article  Google Scholar 

  36. Gu, H.G., Zhang, H.M., Wei, C.L., Yang, M.H., Liu, Z.Q., Ren, W.: Coherence resonance induced stochastic neural firing at a saddle-node bifurcation. Int. J. of Mod. Phys. B 25(29), 3977–3986 (2011)

  37. Prescott, S.A., De Koninck, Y., Sejnowski, T.J.: Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comput. Biol. 4(10), e1000198 (2008)

    Article  MathSciNet  Google Scholar 

  38. Wang, H., Wang, L., Yu, L., Chen, Y.: Response of Morris–Lecar neurons to various stimuli. Phys. Rev. E 83, 021915 (2011)

    Article  Google Scholar 

  39. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  MATH  Google Scholar 

  40. Liu, W.: Criterion of Hopf bifurcations without using eigenvalues. J. Math. Anal. Appl. 182(1), 250–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lee, H., Abed, E.: Washout filters in the bifurcation control of high alpha flight dynamics. In: American Control Conference, pp. 206–211. (1991)

  42. Wang, Q., Yu, S., Li, C., Lü, J., Fang, X., Guyeux, C., Bahi, J.M.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I 63(3), 401–412 (2016)

    Article  MathSciNet  Google Scholar 

  43. Liu, K., Wu, L., Lü, J., Zhu, H.: Finite-time adaptive consensus of a class of multi-agent systems. Sci. China – Technol. Sci. 59(1), 22–32 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Key Research and Development Program of China under Grant 2016YFB0800401, the National Natural Science Foundation of China under Grants 61621003, 61532020, 11472290, 61472027, 11475022, 11547006, 61503046, the Key Program of Frontier Science of the Chinese Academy of Sciences under Grant QYZDJ-SSW-JSC003, and Guangxi Education Department Key Laboratory of Symbolic Computation and Engineering Data Processing (No. FH201502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Sun, W., Zheng, Z. et al. Hopf bifurcation control of the M–L neuron model with type I. Nonlinear Dyn 87, 755–766 (2017). https://doi.org/10.1007/s11071-016-3073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3073-x

Keywords

Navigation