Skip to main content
Log in

Implicit Lyapunov function-based tracking control of a novel ammunition autoloader with base oscillation and payload uncertainty

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Aiming to solve the low positioning accuracy problem of traditional ammunition autoloaders with base oscillation and payload uncertainty, and achieve arbitrary angle loading for the tank gun, this paper presents a trajectory tracking control for a novel ammunition autoloader. The proposed control is composed of computer torque method and an implicit Lyapunov control. The computer torque method is used to linearize and decouple the system dynamics. The implicit Lyapunov control, which could be interpreted as a proportional derivative (PD) control with continuous time-varying gains, is used to stabilize the linearized uncertain system. Simulation results show that the proposed control greatly compensates the effects of the disturbances caused by base oscillation and payload uncertainty, realizing robust trajectory tracking control of the system, but the control forces always satisfy given constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wierwirth, A.P., Sauerwald, W., Hulsewis, H., et al: Automatic Loading Device for a Gun. U.S. Patent (No. 4838141) (1989)

  2. Iwamura, T., Toda, M.: Motion control of an oscillatory-base manipulator using sliding mode control via rotating sliding surface with variable-gain integral control. In: American Control Conference (ACC), pp. 5742–5747. IEEE (2013)

  3. Mohan, S., Kim, J.: Indirect adaptive control of an autonomous underwater vehicle-manipulator system for underwater manipulation tasks. Ocean Eng. 54(4), 233–243 (2012)

    Article  Google Scholar 

  4. Shim, H., Jun, B., Lee, P., et al.: Dynamic workspace control method for underwater manipulator of floating rov. Int. J. Precis. Eng. Manuf. 14(3), 387–396 (2013)

    Article  Google Scholar 

  5. Xu, W., Meng, D., Chen, Y., et al.: Dynamics modeling and analysis of a flexible-base space robot for capturing large flexible spacecraft. Multibody Syst. Dyn. 32(3), 357–401 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Khosravi, M.A., Taghirad, H.D.: Robust PID control of fully-constrained cable driven parallel robots. Mechatronics 25(2), 87–97 (2014)

    Article  Google Scholar 

  7. Zhong, G., Kobayashi, Y., Hoshino, Y., et al.: System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty. Nonlinear Dyn. 73(1–2), 167–182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Qian, S., Zi, B., Ding, H.: Dynamics and trajectory tracking control of cooperative multiple mobile cranes. Nonlinear Dyn. 83(1–2), 89–108 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Yang, T.W., Xu, W.L., Han, J.D.: Dynamic compensation control of flexible macro–micro manipulator systems. IEEE Trans. Control Syst. Technol. 18(1), 143–151 (2010)

    Article  Google Scholar 

  10. Duan, X., Qiu, Y., Mi, J., et al.: Motion prediction and supervisory control of the macro-micro parallel manipulator system. Robotica 29(7), 1005–1015 (2011)

    Article  Google Scholar 

  11. Duan, X., Qiu, Y., Bao, H., et al.: Real-time motion planning based vibration control of a macro-micro parallel manipulator system for super antenna. J. Vibroeng. 6(6), 325–332 (2014)

    Google Scholar 

  12. Lin, J., Huang, Z.Z.: A hierarchical fuzzy approach to supervisory control of robot manipulators with oscillatory bases. Mechatronics 17(10), 589–600 (2007)

    Article  Google Scholar 

  13. Lin, J., Huang, Z.Z., Huang, P.H.: An active damping control of robot manipulators with oscillatory bases by singular perturbation approach. J. Sound Vib. 304(1–2), 345–360 (2007)

    Article  Google Scholar 

  14. Lin, J., Lin, C.C., Lo, H.S.: Pseudo-inverse jacobian control with grey relational analysis for robot manipulators mounted on oscillatory bases. J. Sound Vib. 326(3–5), 421–437 (2009)

    Article  Google Scholar 

  15. Lin, J., Lin, C.C.: Hybrid fuzzy position/force control by adaptive network-based fuzzy inference system for robot manipulator mounted on oscillatory base. J. Vib. Control 21(10), 1930–1945 (2013)

    Article  MathSciNet  Google Scholar 

  16. Sato, M., Toda, M.: Robust motion control of an oscillatory-base manipulator in a global coordinate system. IEEE Trans. Ind. Electron. 62(2), 1163–1174 (2015)

    Article  Google Scholar 

  17. Toda, M.: Robust Motion Control of Oscillatory-Base Manipulators. Springer, Cham (ZG) (2016)

  18. Han, J., Chung, W.K.: Active use of restoring moments for motion control of an underwater vehicle-manipulator system. IEEE J. Ocean. Eng. 39(1), 100–109 (2014)

    Article  Google Scholar 

  19. Zhang, J., Li, W., Yu, J., et al.: Development of a virtual platform for telepresence control of an underwater manipulator mounted on a submersible vehicle. IEEE Trans. Ind. Electron. 1–1, 1–11 (2016)

    Google Scholar 

  20. Wang, C., Wu, P., Zhou, X., et al.: Composite sliding mode control for a free-floating space rigid–flexible coupling manipulator system. Int. J. Adv. Robot. Syst. 10(2), 323–330 (2013)

    Google Scholar 

  21. Rybus, T., Seweryn, K., Sasiadek, J.Z.: Control system for free-floating space manipulator based on nonlinear model predictive control (nmpc). J. Intell. Robot. Syst. doi:10.1007/s10846-016-0396-2 (2016)

  22. Anan’evskii, I.M.: Synthesis of continuous control of a mechanical system with an unknown inertia matrix. J. Comput. Syst. Sci. Int. 45(3), 356–367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chernous’ko, F.L., Anan’evskii, I.M., Reshmin, S.A.: Control of Nonlinear Dynamical Systems, Methods and Applications. Springer, Berlin (2008)

  24. Masarati, P.: Computed torque control of redundant manipulators using general-purpose software in real-time. Multibody Syst. Dyn. 32(4), 403–428 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Supported by Grants from the National Natural Science Foundation of China (Nos. 51605344, 51175266) and China Postdoctoral Science Foundation funded project (No. 2016M592398).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Yufei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yufei, G., Baolin, H. Implicit Lyapunov function-based tracking control of a novel ammunition autoloader with base oscillation and payload uncertainty. Nonlinear Dyn 87, 741–753 (2017). https://doi.org/10.1007/s11071-016-3072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3072-y

Keywords

Navigation