Skip to main content
Log in

Nonlinear modeling for dynamic analysis of a rotating cantilever beam

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript


This paper proposes a nonlinear model for more accurate and efficient dynamic analysis of a rotating cantilever beam with elastic deformation. The proposed nonlinear model is described by partial integro-differential equations with non-Cartesian deformation variables, i.e., the stretch, chordwise and flapwise deformations. After the equations of motion are discretized by using the mode superposition method, dynamic responses are computed by applying the Newmark time integration method to the discretized equations. To show the accuracy and efficiency of the proposed model, convergence characteristics and dynamic responses for the present model are compared with those for previous models. This study shows that the proposed model not only yields good accuracy and efficiency in terms of computation, but also overcomes the limitations of a previous conventional nonlinear model expressed by Cartesian variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others


  1. Hoa, S.V.: Vibration of a rotating beam with tip mass. J. Sound Vib. 67, 369–391 (1979)

    Article  MATH  Google Scholar 

  2. Simo, J.C., Vuquoc, L.: The role of non-linear theories in transient dynamic analysis of flexible structures. J. Sound Vib. 119, 487–508 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pesheck, E., Pierre, C., Shaw, S.W.: Accurate reduced-order models for a simple rotor blade model using nonlinear normal modes. Math. Comput. Model. 33, 1085–1097 (2001)

    Article  MATH  Google Scholar 

  4. Pesheck, E., Pierre, C., Shaw, S.W.: Modal reduction of a nonlinear rotating beam through nonlinear normal modes. J. Vib. Acoust. 124, 229–236 (2002)

    Article  Google Scholar 

  5. Banerjee, J.R., Kennedy, D.: Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects. J. Sound Vib. 333, 7299–7312 (2014)

    Article  Google Scholar 

  6. Kane, T.R., Ryan, R.R., Banerjee, A.K.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control Dyn. 10, 139–151 (1987)

    Article  Google Scholar 

  7. Yoo, H.H., Ryan, R.R., Scott, R.A.: Dynamics of flexible beams undergoing overall motions. J. Sound Vib. 181, 261–278 (1995)

    Article  MATH  Google Scholar 

  8. Lim, H.S., Yoo, H.H.: Modal analysis of a multi-blade system undergoing rotational motion. J. Mech Sci. Technol. 23, 2051–2058 (2009)

    Article  Google Scholar 

  9. Chung, J., Yoo, H.H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249, 147–164 (2002)

    Article  Google Scholar 

  10. Gunjal, S.K., Dixit, U.S.: Vibration analysis of shape-optimized rotating cantilever beams. Eng. Optimiz. 39, 105–123 (2007)

  11. Huang, C.L., Lin, W.Y., Hsiao, K.M.: Free vibration analysis of rotating Euler beams at high angular velocity. Comput. Struct. 88, 991–1001 (2010)

    Article  Google Scholar 

  12. Kim, H., Yoo, H.H., Chung, J.: Dynamic model for free vibration and response analysis of rotating beams. J. Sound Vib. 332, 5917–5928 (2013)

    Article  Google Scholar 

  13. Sharf, I.: Geometrically non-linear beam element for dynamics simulation of multibody systems. Int. J. Numer. Meth. Eng. 39, 763–786 (1996)

    Article  MATH  Google Scholar 

  14. Apiwattanalunggarn, P., Shaw, S.W., Pierre, C., Jiang, D.Y.: Finite-element-based nonlinear modal reduction of a rotating beam with large-amplitude motion. J. Vib. Control 9, 235–263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Arvin, H., Bakhtiari-Nejad, F.: Non-linear modal analysis of a rotating beam. Int. J. Nonlinear Mech. 46, 877–897 (2011)

    Article  Google Scholar 

  16. Wang, F.: Model reduction with geometric stiffening nonlinearities for dynamic simulations of multibody systems. Int. J. Struct. Stab. Dyn. 13, 1350046 (2013)

    Article  MathSciNet  Google Scholar 

  17. Valverde, J., García-Vallejo, D.: Stability analysis of a substructured model of the rotating beam. Nonlinear Dyn. 55, 355–372 (2009)

    Article  MATH  Google Scholar 

  18. Younesian, D., Esmailzadeh, E.: Non-linear vibration of variable speed rotating viscoelastic beams. Nonlinear Dyn. 60, 193–205 (2010)

    Article  MATH  Google Scholar 

  19. Lacarbonara, W., Arvin, H., Bakhtiari-Nejad, F.: A geometrically exact approach to the overall dynamics of elastic rotating blades—Part 1: Linear modal properties. Nonlinear Dyn. 70, 659–675 (2012)

    Article  MathSciNet  Google Scholar 

  20. Arvin, H., Lacarbonara, W., Bakhtiari-Nejad, F.: A geometrically exact approach to the overall dynamics of elastic rotating blades—Part 2: Flapping nonlinear normal modes. Nonlinear Dyn. 70, 2279–2301 (2012)

    Article  MathSciNet  Google Scholar 

  21. Yao, M.H., Chen, Y.P., Zhang, W.: Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 68, 487–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bekhoucha, F., Rechak, S., Duigou, L., Cadou, J.M.: Nonlinear forced vibrations of rotating anisotropic beams. Nonlinear Dyn. 74, 1281–1296 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references


This work was supported by a Grant from the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2011-0017408).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jintai Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Chung, J. Nonlinear modeling for dynamic analysis of a rotating cantilever beam. Nonlinear Dyn 86, 1981–2002 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: