Skip to main content
Log in

Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A physically enhanced secure wavelength division multiplexing chaos communication scheme in virtue of the chaos synchronization of two multimode semiconductor lasers (MSLs) is introduced. In this scheme, two communicating MSLs are subjected to identical optical injections from a chaotic external-cavity MSL, and each mode of the communicating MSLs is used as a chaotic carrier. The messages are divided into a set of blocks, and these blocks are transmitted by different modes in different time slots, according to a pre-negotiated pattern. The numerical results indicate that high-quality chaos synchronization with a wide operation region and relatively strong frequency detuning tolerance can be achieved between the communicating MSL modes, which can afford multiple simultaneous bidirectional message transmissions. Moreover, because of the carrier-consumption competition in the MSL cavity, the peak average power ratios of the chaotic carriers are much larger and more widely distributed with respect to selected single-mode injection or feedback cases, which can obviously enhance the link security against the attack of linear filtering. Also, the carrier-consumption competition induces a cross talk between the transmission messages, which can greatly improve the link security when eavesdroppers adopt the synchronization utilization method to attack the public link. Furthermore, with the non-fixed wavelength transmission technology, the system security can also be further improved greatly. The proposed scheme provides a new way to implement high-speed multichannel chaos communication with high physically enhanced security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Soriano, M.C., Garcia-Ojalvo, J., Mirasso, C.R., Fischer, I.: Complex photonics: dynamics and applications of delay-coupled semiconductor lasers. Rev. Mod. Phys. 85, 421–470 (2013). doi:10.1103/RevModPhys.85.421

    Article  Google Scholar 

  2. Argyris, A., Syvrids, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., Garcia-Ojalvo, J., Mirasso, C.R., Pesquera, L., Shore, K.A.: Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 437, 343–346 (2005). http://www.nature.com/nature/journal/v438/n7066/abs/nature04275.html

  3. Li, N.Q., Pan, W., Yan, L.S., Luo, B., Zou, X.H.: Enhanced chaos synchronization and communication in cascade-coupled semiconductor ring lasers. Commun. Nonliner Sci. Numer. Simul. 19, 1874–1883 (2014). doi:10.1016/j.cnsns.2013.09.036

    Article  Google Scholar 

  4. Deng, T., Xia, G.Q., Wu, Z.M.: Broadband chaos synchronization and communication based on mutually coupled VCSELs subject to a bandwidth-enhanced chaotic signal injection. Nonlinear Dyn. 76, 399–407 (2014). doi:10.1007/s11071-013-1134-y

    Article  Google Scholar 

  5. Klein, E., Gross, N., Rosenbluh, M., Kinzel, W., Khaykovich, L., Kanter, I.: Stable isochronal synchronization of mutually coupled chaotic lasers. Phys. Rev. E 73, 066214 (2006). doi:10.1103/PhysRevE.73.066214

    Article  Google Scholar 

  6. Argyris, A., Grivas, E., Bogris, A., Syvridis, D.: Transmission effects in wavelength division multiplexed chaotic optical communication systems. J. Lightwave Technol. 28, 3107–3114 (2010). doi:10.1109/JLT.2010.2073444

    Google Scholar 

  7. Zhang, J.Z., Wang, A.B., Wang, J.F., Wang, Y.C.: Wavelength division multiplexing of chaotic secure and fiber-optic communications. Opt. Express 17, 6357–6367 (2009). doi:10.1364/OE.17.006357

    Article  Google Scholar 

  8. Jiang, N., Zhang, C.F., Qiu, K.: Secure passive optical network based on chaos synchronization. Opt. Lett. 37, 4501–4503 (2012). doi:10.1364/OL.37.004501

    Article  Google Scholar 

  9. Ohtsubo, J.: Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback. IEEE J. Quantum Electron. 38, 1141–1154 (2002). doi:10.1109/JQE.2002.801883

    Article  Google Scholar 

  10. Li, N.Q., Pan, W., Luo, B., Yan, L.S., Zou, X.H., Xiang, S.Y.: High bit rate fiber-optic transmission using a four-chaotic-semiconductor-laser scheme. IEEE Photon. Technol. Lett. 24, 1072–1074 (2012). doi:10.1109/LPT.2012.2194482

    Article  Google Scholar 

  11. Vicente, R., Perez, T., Mirasso, C.R.: Open- versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers. IEEE J. Quantum Electron. 38, 1197–1204 (2002). doi:10.1109/JQE.2002.802110

    Article  Google Scholar 

  12. Yan, S.L.: Chaotic synchronization of two mutually coupled semiconductor lasers for optoelectronic logic gates. Commun. Nonlinear Sci. Numer Simul. 17, 2896–2904 (2012). doi:10.1016/j.cnsns.2011.10.034

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, N., Pan, W., Luo, B., Yan, L.S., Xiang, S.Y., Yang, L., Zheng, D., Li, N.: Properties of leader/laggard chaos synchronization in mutually coupled external-cavity semiconductor lasers. Phys. Rev. E 81, 066217 (2010). doi:10.1103/PhysRevE.81.066217

    Article  Google Scholar 

  14. Mengue, A.D., Essimbi, B.Z.: Secure communication using chaotic synchronization in mutually coupled semiconductor lasers. Nonlinear Dyn. 70, 1241–1253 (2012). doi:10.1007/s11071-012-0528-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, N., Pan, W., Yan, L.S., Luo, B., Zhang, W.L., Xiang, S.Y., Yang, L., Zheng, D.: Chaos synchronization and communication in mutually coupled semiconductor lasers driven by a third laser. J. Lightwave Technol. 28, 1978–1986 (2010). doi:10.1109/JLT.2010.2050858

    Article  Google Scholar 

  16. Jiang, N., Pan, W., Luo, B., Yan, L.S., Xiang, S.Y., Yang, L.: Simultaneous unidirectional and bidirectional chaos-based optical communication using hybrid coupling semiconductor lasers. Sci. China Inf. Sci. 5, 012401 (2014). doi:10.1007/s11432-012-4721-5

    Google Scholar 

  17. Bogris, A., Argyris, A., Syvridis, D.: Encryption efficiency analysis of chaotic communication systems based on photonic integrated chaotic circuits. IEEE J. Quantum Electron. 46, 1421–1429 (2010). doi:10.1109/JQE.2010.2049986

    Article  Google Scholar 

  18. Kanakidis, D., Argyris, A., Bogris, A., Syvridis, D.: Influence of decoding process on the performance of chaos encrypted optical communication systems. J. Lightwave Technol. 24, 335–341 (2006). doi:10.1109/JLT.2005.859850

    Article  Google Scholar 

  19. Jiang, N., Pan, W., Luo, B., Xiang, S.Y.: Synchronization properties of a cascaded system consisting of two external-cavity semiconductor lasers mutually coupled via an intermediate laser. IEEE J. Sel. Top. Quantum Electron. 19, 1500108 (2013). doi:10.1109/JSTQE.2012.2218220

    Article  Google Scholar 

  20. Lang, R., Kobayashi, K.: External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16, 347–355 (1980). doi:10.1109/JQE.1980.1070479

    Article  Google Scholar 

  21. Buldu, J.M., Garcia-Ojalvo, J., Torrent, M.C.: Multimode synchronization and communication using unidirectionally coupled semiconductor lasers. IEEE J. Quantum Electron. 40, 640–650 (2004). doi:10.1109/JQE.2004.828230

    Article  Google Scholar 

  22. Heil, T., Fischer, I., Elsasser, W., Mulet, J., Mirasso, C.R.: Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. Phys. Rev. Lett. 86, 795–798 (2001). doi:10.1103/PhysRevLett.86.795

    Article  Google Scholar 

  23. Wu, J.G., Wu, Z.M., Xia, G.Q., Deng, T., Lin, X.D., Tang, X., Feng, G.Y.: Isochronal synchronization between chaotic semiconductor lasers over 40-km fiber links. IEEE Photon Technol. Lett. 23, 1854–1856 (2011). doi:10.1109/LPT.2011.2170212

    Article  Google Scholar 

  24. Lee, M.W., Shore, K.A.: Two-mode chaos synchronization using a multimode external-cavity laser diode and two single-mode laser diodes. J. Lightwave Technol. 23, 1068–1073 (2005). doi:10.1109/JLT.2004.839979

    Article  Google Scholar 

  25. Bogris, A., Rizomiliotis, P., Chlouverakis, K.E., Argyris, A., Syvridis, D.: Feedback phase in optically generated chaos: a secret key for cryptographic applications. IEEE J. Quantum Electron. 44, 119–124 (2008). doi:10.1109/JQE.2007.911687

    Article  Google Scholar 

  26. Wu, J.G., Wu, Z.M., Liu, Y., Fan, L., Tang, X., Xia, G.Q.: Simulation of bidirectional long-distance chaos communication performance in a novel fiber-optic chaos synchronization system. J. Lightwave Technol. 31, 461–467 (2013). doi:10.1109/JLT.2012.2232283

    Article  Google Scholar 

  27. Zhang, F., Chu, P.L.: Effect of transmission fiber on chaos communication system based on erbium-doped fiber ring laser. J. Lightwave Technol. 21, 3334–3343 (2003). doi:10.1109/JLT.2003.821721

    Article  Google Scholar 

  28. Vicente, R., Mirasso, C.R., Fischer, I.: Simultaneous bidirectional message transmission in a chaos-based communication scheme. Opt. Lett. 32, 403–405 (2007). doi:10.1364/OL.32.000403

    Article  Google Scholar 

Download references

Acknowledgments

This Work was partially supported by the National Natural Science Foundation of China (61301156, 61471087), and the Specialized Research Fund for Doctoral Program of Higher Education of China No. 20130185120007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Xue, C., Lv, Y. et al. Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers. Nonlinear Dyn 86, 1937–1949 (2016). https://doi.org/10.1007/s11071-016-3006-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3006-8

Keywords

Navigation