Skip to main content
Log in

Hopping on a wave: from periodic to chaotic transport

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the dynamics of a particle on an elastic surface carrying a harmonic traveling wave. The particle–surface interaction is assumed to be inelastic both normally and tangentially, and the surface is assumed to provide a kinematic boundary condition to the particle. In this setting, we search for periodic hopping solutions of the particle. The results point to a rich variety of possible particle trajectories which include periodic and chaotic motions. Interestingly, coexisting distinct multi-period attractors, (one with period-3 and its multiples, and including coexisting periodic–chaotic attractors) are observed over a frequency band. In the case of a mutually non-interacting multi-particle system, we observe ballistic and diffusive transport in inter-leaved frequency bands. These results indicate tunability of transport without/with mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aranson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78(2), 641 (2006)

    Article  Google Scholar 

  2. Barroso, J.J., Carneiro, M.V., Macau, E.E.N.: Bouncing ball problem: stability of the periodic modes. Phys. Rev. E 79(2), 026206 (2009)

    Article  MathSciNet  Google Scholar 

  3. Buguin, A., Brochard, F., de Gennes, P.-G.: Motions induced by asymmetric vibrations. Eur. Phys. J. E 19(1), 31–36 (2006)

    Article  Google Scholar 

  4. Burnham, N.A., Kulik, A.J., Gremaud, G., Briggs, G.A.D.: Nanosubharmonics: the dynamics of small nonlinear contacts. Phys. Rev. Lett. 74, 5092–5095 (1995)

    Article  Google Scholar 

  5. Daniel, S., Chaudhury, M.K., de Gennes, P.-G.: Vibration-actuated drop motion on surfaces for batch microfluidic processes. Langmuir 21(9), 4240–4248 (2005)

    Article  Google Scholar 

  6. de Boer, M.P., Luck, D.L., Ashurst, W.R., Maboudian, R., Corwin, A.D., Walraven, J.A., Redmond, J.M.: High-performance surface-micromachined inchworm actuator. J. Microelectromech. Syst. 13(1), 63–74 (2004)

    Article  Google Scholar 

  7. de Gennes, P.-G.: Brownian motion with dry friction. J. Stat. Phys. 119(5), 953–962 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dettmann, C.P., Cohen, E.G.D.: Microscopic chaos and diffusion. J. Stat. Phys. 101(3), 775–817 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, L., Chaudhury, A., Chaudhury, M.K.: Lateral vibration of a water drop and its motion on a vibrating surface. Eur. Phys. J. E 21(3), 231–242 (2007)

    Article  Google Scholar 

  10. Eglin, M., Eriksson, M.A., Carpick, R.W.: Microparticle manipulation using inertial forces. Appl. Phys. Lett. 88(9), 091913 (2006)

    Article  Google Scholar 

  11. Erdész, K., Szalay, A.: Experimental study on the vibrational transport of bulk solids. Powder Technol. 55(2), 87–96 (1988)

    Article  Google Scholar 

  12. Everson, R.M.: Chaotic dynamics of a bouncing ball. Phys. D: Nonlinear Phenom. 19(3), 355–383 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fermi, E.: On the origin of the cosmic radiation. Phys. Rev. 75, 1169–1174 (1949)

    Article  MATH  Google Scholar 

  14. Flach, S., Yevtushenko, O., Zolotaryuk, Y.: Directed current due to broken time-space symmetry. Phys. Rev. Lett. 84, 2358–2361 (2000)

    Article  Google Scholar 

  15. Fleishman, D., Asscher, Y., Urbakh, M.: Directed transport induced by asymmetric surface vibrations: making use of friction. J. Phys.: Condens. Matter 19(9), 096004 (2007)

    Google Scholar 

  16. Fleishman, D., Filippov, A.E., Urbakh, M.: Directed molecular transport in an oscillating symmetric channel. Phys. Rev. E 69, 011908 (2004)

    Article  Google Scholar 

  17. Gabai, R., Bucher, I.: Excitation and sensing of multiple vibrating traveling waves in one-dimensional structures. J. Sound Vib. 319(12), 406–425 (2009)

    Article  Google Scholar 

  18. Goohpattader, P.S., Mettu, S., Chaudhury, M.K.: Stochastic rolling of a rigid sphere in weak adhesive contact with a soft substrate. Eur. Phys. J. E 34(11), 1–11 (2011)

    Article  Google Scholar 

  19. Hashimoto, Y., Koike, Y., Ueha, S.: Near-field acoustic levitation of planar specimens using flexural vibration. J. Acoust. Soc. Am. 100(4), 2057–2061 (1996)

    Article  Google Scholar 

  20. Hashimoto, Y., Koike, Y., Ueha, S.: Transporting objects without contact using flexural traveling waves. J. Acoust. Soc. Am. 103(6), 3230–3233 (1998)

    Article  Google Scholar 

  21. Holmes, P.J.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vib. 84(2), 173–189 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ibrahim, R.A.: Vibro-Impact Dynamics—Modeling, Mapping and Applications. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  23. Leloup, J.-C., Goldbeter, A.: Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in drosophila. J. Theor. Biol. 198(3), 445–459 (1999)

    Article  Google Scholar 

  24. Leonel, E.D., Livorati, André L.P.: Describing fermi acceleration with a scaling approach: the bouncer model revisited. Phys. A: Stat. Mech. Its Appl. 387(5), 1155–1160 (2008)

    Article  Google Scholar 

  25. Li, T.-Y., Yorke, J.A.: Period three implies chaos. Am. Math. mon. 82(10), 985–992 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo, A.C.J., Guo, Y.: Vibro-Impact Dynamics. Wiley, Chichester (2013)

    Book  MATH  Google Scholar 

  27. Luo, A.C.J., Han, R.P.S.: The dynamics of a bouncing ball with a sinusoidally vibrating table revisited. Nonlinear Dyn. 10(1), 1–18 (1996)

    Article  MathSciNet  Google Scholar 

  28. Macau, E.E.N., Carneiro, M.V., Barroso, J.J.: Bouncing ball problem: numerical behavior characterization. J. Phys.: Conf. Ser. 246(1), 012003 (2010)

    Google Scholar 

  29. Mettu, S., Chaudhury, M.K.: Motion of liquid drops on surfaces induced by asymmetric vibration: role of contact angle hysteresis. Langmuir 27(16), 10327–10333 (2011)

    Article  Google Scholar 

  30. Morita, M., Iwamoto, K., Sen, M.: Transition sequence and birhythmicity in a chemical oscillation model showing chaos. Phys. Rev. A 40, 6592–6596 (1989)

    Article  Google Scholar 

  31. Mracek, M., Wallaschek, J.: A system for powder transport based on piezoelectrically excited ultrasonic progressive waves. Mater. Chem. Phys. 90(23), 378–380 (2005)

    Article  Google Scholar 

  32. Pastor, J.M., Maza, D., Zuriguel, I., Garcimartín, A., Boudet, J.-F.: Time resolved particle dynamics in granular convection. Phys. D: Nonlinear Phenom. 232(2), 128–135 (2007)

    Article  Google Scholar 

  33. Pohl, D.W.: Dynamic piezoelectric translation devices. Rev. Sci. Instrum. 58(1), 54–57 (1987)

    Article  MathSciNet  Google Scholar 

  34. Rademacher, F.J.C., Borg, L.: On the theoretical and experimental conveying speed of granular bulk solids on vibratory conveyors. Forschung im Ingenieurwesen 60(10), 261–283 (1994)

    Article  Google Scholar 

  35. Ragulskis, M., Koizumi, K.: Applicability of attractor control techniques for a particle conveyed by a propagating wave. J. Vib. Control 10(7), 1057–1070 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ragulskis, M., Sanjuán, M.A.F.: Transport of particles by surface waves: a modification of the classical bouncer model. New J. Phys. 10(8), 083017 (2008)

    Article  Google Scholar 

  37. Takano, T., Tomikawa, Y.: Excitation of a progressive wave in a lossy ultrasonic transmission line and an application to a powder-feeding device. Smart Mater. Struct. 7(3), 417 (1998)

    Article  Google Scholar 

  38. Tran, S., Marmottant, P., Thibault, P.: Fast acoustic tweezers for the two-dimensional manipulation of individual particles in microfluidic channels. Appl. Phys. Lett. 101(11), 114103 (2012)

    Article  Google Scholar 

  39. Verma, N., DasGupta, A.: Particle current on flexible surfaces excited by harmonic waves. Phys. Rev. E 88, 052915 (2013)

    Article  Google Scholar 

  40. Viswarupachari, C., DasGupta, A., Khastgir, S.P.: Vibration induced directed transport of particles. Trans. ASME J. Vib. Acoust. 134(5), 051005 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurang Ruhela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruhela, G., DasGupta, A. Hopping on a wave: from periodic to chaotic transport. Nonlinear Dyn 86, 1663–1672 (2016). https://doi.org/10.1007/s11071-016-2984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2984-x

Keywords

Navigation