Skip to main content
Log in

Robust tracking control of a shaking table with dry friction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the design, analysis, implementation, and evaluation of two tracking algorithms to control the motion of a shaking table are described. This mechanism is a component of an experimental platform used to study the effect of oscillatory signals on mechanical structures. The table, driven by a linear brushless motor, presents high dry friction. It is intended to attenuate the negative effects due to this phenomena. The first algorithm is a classical PD controller with friction and disturbance compensation. This controller requires a prior modeling of the mechanism and a good tuning of the control parameters. The second algorithm is a sliding-mode controller based on a non-connected switching surface. This controller makes the system produce a combined sliding motion of first order in a first stage and then a second-order sliding motion. It makes the system converge to the desired trajectory in finite time. The platform instrumentation provides only the measurement of the table position; thus, a discontinuous observer has been included to estimate the velocity. It is shown that both controllers display a good tracking, although the discontinuous algorithm exhibits a better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Alvarez, J., Rosas, D., Peña, J.: Analog implementation of a robust control strategy for mechanical systems. IEEE Trans. Ind. Electron. 56(9), 3377–3385 (2009)

    Article  Google Scholar 

  2. Ashasi-Sorkhabi, A., Malekghasemi, H., Mercan, O.: Implementation and verification of real-time hybrid simulation (RTHS) using a shake table for research and education. J. Vib. Control (2013). doi:10.1177/1077546313498616

    Google Scholar 

  3. Baratta, A., Corbi, I., Corbi, O., Carneiro, R., Bairr ao, R.: Open access shaking table experimental researches aimed at the protection of structures subject to dynamic loading. Open Constr. Build. Technol. J. 6, 355–360 (2012)

    Article  Google Scholar 

  4. Cetin, S., Zergeroglu, E., Sivrioglu, S., Yuksek, I.: A new semiactive nonlinear adaptive controller for structures using MR damper: design and experimental validation. Nonlinear Dyn. 66(4), 731–743 (2011). doi:10.1007/s11071-011-9946-0

    Article  MathSciNet  Google Scholar 

  5. Conte, J., Trombetti, T.: Linear dynamic modeling of a uni-axial servo-hydraulic shaking table system. Earthq. Eng. Struct. Dyn. 29, 1375–1404 (2000)

    Article  Google Scholar 

  6. Cuesta, R., Alvarez, J., Miranda, M.: Robust tracking and cruise control of a class of robotic systems. Math. Probl. Eng., Article ID 728412 NaN (2015)

  7. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic Publishers, Berlin (1988)

    Book  MATH  Google Scholar 

  8. Guan, G.F., Wang, H.T., Xiong, W.: Random vibration control of a hydraulic shaking table. J. Vib. Control 20(2), 204–217 (2014)

    Article  Google Scholar 

  9. Horacio Andrés, C.E.: Control Robusto Activo Para La Minimización de Vibraciones En Una Estructura Flexible de Tres Pisos Bajo Excitaciones sísmicas. Ph.D. thesis. Universidad del Valle, Colombia (2010)

    Google Scholar 

  10. Ji, X., Kajiwara, K., Nagae, T., Enokida, R., Nakashima, M.: A substructure shaking table test for reproduction of earthquake responses of high-rise buildings. Earthq. Eng. Struct. Dynam. 38, 1381–1399 (2009)

    Article  Google Scholar 

  11. Kelly, R., Llamas, J., Campa, R.: A measurement procedure for viscous and Coulomb friction. IEEE Trans. Instrum. Meas. 49, 857–861 (2000)

    Article  Google Scholar 

  12. Kelly, R., Santibáñez, V., Loría, A.: Control of Robots Manipulators in Joint Space. Springer-Verlag, Berlin (2005)

    Google Scholar 

  13. Lamarche, C., Tremblay, R., Léger, P., Leclerc, M., Bursi, O.: Comparison between real-time dynamic substructuring and shake table testing techniques for nonlinear seismic applications. Earthq. Eng. Struct. Dynam. 39, 1299–1320 (2010)

    Google Scholar 

  14. Orlov, Y.: Finite time stability and robust control synthesis of uncertain switched systems. SIAM J. Control Optim. 43(4), 1253–1271 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Phillips, B.M., Wierschem, N.E., Spencer Jr., B.: Model-based multi-metric control of uniaxial shake tables. Earthq. Eng. Struct. Dynam. 43, 681–699 (2014)

    Article  Google Scholar 

  16. Preumont, A., Seto, K.: Active Control of Structures. Wiley, New Jersey (2008)

    Book  Google Scholar 

  17. Rosas, D., Alvarez, J., Fridman, L.: Robust observation and identification of n DOF lagrangian systems. Int. J. Robust Nonlinear 17, 842–861 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rosas, D., Alvarez, J., Fridman, L.: Robust observation and identification of n DOF lagrangian systems. Int. J. Robust Nonlinear 17, 842–861 (2007)

  19. Seki, K., Iwasaki, M., Kawafuku, M., Hirai, H., Yasuda, K.: Adaptive compensation for reaction force with frequency variation in shaking table systems. IEEE Trans. Ind. Electron. 56(10), 3864–3871 (2009)

    Article  Google Scholar 

  20. Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators. Transactions ASME. J. Dyn. Syst. Meas. Control 103(2), 119–125 (1981)

    Article  MATH  Google Scholar 

  21. Tang, Y., Zhu, Z., Shen, G., Li, X.: Experimental investigation of feedforward inverse control with disturbance observer for acceleration tracking of electro-hydraulic shake table. J. VibroEng. 17(1), 330–345 (2015)

    Google Scholar 

  22. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor and Francis, Abingdon-on-Thames (1999)

  23. Yang, X., Junwei, H.: Three state controller design of shaking table in active structural control system. In: IEEE International conference on control and automation guangzhou, China, pp. 88–93 (2007)

  24. Zhong Lin, Y., Christenson, R.E.: Comparison of real-time hybrid testing with shake table tests for an MR damper controlled structure. In: American control conference, Hyatt Regency Riverfront, St Louis, pp. 5228–5233 (2009)

Download references

Acknowledgments

This work was partially funded by the National Council for Science and Technology of Mexico (CONACYT), under the Grant Nb. CB2012-180011-Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Hirata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirata, G., Alvarez, J. & Cuesta, R. Robust tracking control of a shaking table with dry friction. Nonlinear Dyn 86, 1535–1547 (2016). https://doi.org/10.1007/s11071-016-2975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2975-y

Keywords

Navigation