Skip to main content
Log in

A new approach to study the coexistence of some synchronization types between chaotic maps with different dimensions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

When synchronizing chaotic systems, an interesting phenomenon that may occur is the coexistence of several synchronization types. Referring to discrete-time chaotic (hyperchaotic) systems, this paper presents a new approach to rigorously study the coexistence of some synchronization types between maps with different dimensions. By exploiting a Lyapunov-based approach, the paper first analyzes the coexistence of full state hybrid projective synchronization and generalized synchronization when the drive system is a three-dimensional map and the response system is a two-dimensional map. Successively, the coexistence of three different synchronization types is illustrated, i.e., inverse projective synchronization, inverse generalized synchronization and Q–S synchronization are proved to coexist between two-dimensional drive systems and three-dimensional response systems. Finally, by exploiting a pole placement technique, the coexistence of antiphase synchronization and dislocated full state hybrid projective synchronization is proved to be achieved between three-dimensional drive system maps and two-dimensional response system maps. Since synchronization is achieved in finite time, this last case represents an example of dead beat coexistence of some synchronization types in maps with different dimensions. Several numerical examples of coexistence of synchronization types are illustrated, with the aim to show the effectiveness of the novel approach developed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carroll, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. 38(4), 453–456 (1991)

    Article  MATH  Google Scholar 

  2. Brucoli, M., Carnimeo, L., Grassi, G.: A method for the synchronization of hyperchaotic circuits. Int. J. Bifurc. Chaos 6(9), 1673–1681 (1996)

    Article  MATH  Google Scholar 

  3. Grassi, G., Mascolo, S.: Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 1011–1014 (1997)

    Article  Google Scholar 

  4. Grassi, G., Mascolo, S.: Synchronisation of hyperchaotic oscillators using a scalar signal. IEE Electron. Lett. 34(5), 424–425 (1998)

    Article  Google Scholar 

  5. Brucoli, M., Cafagna, D., Carnimeo, L., Grassi, G.: Synchronization of hyperchaotic circuits via continuous feedback control with application to secure communications. Int. J. Bifurc. Chaos 8, 2031–2040 (1998)

    Article  MATH  Google Scholar 

  6. Grassi, G., Mascolo, S.: Synchronizing hyperchaotic systems by observer design. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 46(4), 478–483 (1999)

    Article  MATH  Google Scholar 

  7. Manieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82(15), 3042–3045 (1999)

    Article  Google Scholar 

  8. Chee, C.Y., Xu, D.: Control of the formation of projective synchronization in lower-dimensional discrete-time systems. Phys. Lett. A 318(1–2), 112–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Xu, D.: Control of projective synchronization in chaotic systems. Phys. Rev. E 63, 2 (2001)

    Article  Google Scholar 

  10. Xu, D., Chee, C.Y.: Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension. Phys. Rev. E 66(4), 046218 (2002)

    Article  Google Scholar 

  11. Grassi, G., Miller, D.A.: Arbitrary observer scaling of all chaotic drive system states via a scalar synchronizing signal. Chaos Solitons Fractals 39(3), 1246–1252 (2009)

    Article  MATH  Google Scholar 

  12. Grassi, G., Miller, D.A.: Projective synchronization via a linear observer: application to time-delay, continuous-time and discrete-time systems. Int. J. Bifurc. Chaos 17(4), 1337–1342 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Niu, Y.J., Wang, X.Y., Nian, F.Z., Wang, M.J.: Dynamic analysis of a new chaotic system with fractional order and its generalized projective synchronization. Chin. Phys. B 19(12), 120507–1 (2010)

    Article  Google Scholar 

  14. Hu, M., Xu, Z., Zhang, R., Hu, A.: Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order. Phys. Lett. A 365(4), 315–327 (2007)

    Article  MathSciNet  Google Scholar 

  15. Zhang, Q., Lu, J.: Full state hybrid lag projective synchronization in chaotic (hyperchaotic) systems. Phys. Lett. A 372(9), 1416–1421 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, M., Xu, Z., Zhang, R., Hu, A.: Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyperchaotic) systems. Phys. Lett. A 361(3), 231–237 (2007)

  17. Hu, M., Xu, Z., Zhang, R.: Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems. Commun. Nonlinear Sci. Numer. Simul. 13(2), 456–464 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu, M., Xu, Z., Zhang, R.: Full state hybrid projective synchronization of a general class of chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 13(4), 782–789 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ghosh, D.: Nonlinear active control-based generalized synchronization in time-delayed systems. Nonlinear Dyn. 59, 289–296 (2010)

    Article  MATH  Google Scholar 

  20. Zhao, J., Ren, T.: Q–S synchronization between chaotic systems with double scaling functions. Nonlinear Dyn. 62, 665–672 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Z.L., Shi, X.R.: Adaptive Q–S synchronization of non-identical chaotic systems with unknown parameters. Nonlinear Dyn. 59, 559–567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, L.F., An, X.L., Zhang, J.G.: A new chaos synchronization scheme and its application to secure communications. Nonlinear Dyn. 73, 705–722 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grassi, G.: Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal. Chin. Phys. B 21(6), 060504 (2012)

    Article  Google Scholar 

  24. Wang, X.Y.: Chaos in Complex Nonlinear Systems. Publishing House of Electronics Industry, Beijing (2003)

    Google Scholar 

  25. Hénon, M.: A two dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–76 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stefanski, K.: Modelling chaos and hyperchaos with 3D maps. Chaos Solitons Fractals 9, 83–93 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zeraoulia, E., Sprott, J.C.: A minimal 2-D quadratic map with quasi-periodic route to chaos. Int. J. Bifurc. Chaos 18(5), 1567–1577 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Grassi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouannas, A., Grassi, G. A new approach to study the coexistence of some synchronization types between chaotic maps with different dimensions. Nonlinear Dyn 86, 1319–1328 (2016). https://doi.org/10.1007/s11071-016-2966-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2966-z

Keywords

Navigation