Skip to main content
Log in

Exact solutions for nonlinear evolution equations using novel test function

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on Bell polynomials approach, in this paper we have used Maple computer algebra package PDEBellII for constructing bilinear equations for some nonlinear evolution equations. Bilinear equations are then used to construct exact solutions using novel test function. Symbolic manipulation program Maple has been used to carry out tedious calculations involved, and a simple Maple code is also given in the form of appendix. The exact solutions obtained using novel test function enrich the solution structure of well-known evolution equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60(7), 650–654 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Malfliet, W., Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54(6), 563–568 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289(1–2), 69–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhou, Y., Wang, M., Wang, Y.: Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308(1), 31–36 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30(3), 700–708 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bekir, A.: Multisoliton solutions to Cahn–Allen equation using double exp-function method. Phys. Wave Phenom. 20(2), 118–121 (2012)

    Article  Google Scholar 

  7. Kaplan, M., Bekir, A., Akbulut, A.: A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-2867-1

  8. Çevikel, A.C., Bekir, A., Akar, M., San, S.: A procedure to construct exact solutions of nonlinear evolution equations. Pramana 79(3), 337–344 (2012)

    Article  Google Scholar 

  9. Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations, vol. 154. Springer, New York (2002)

    MATH  Google Scholar 

  10. Gupta, R.K., Singh, K.: Symmetry analysis and some exact solutions of cylindrically symmetric null fields in general relativity. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4189–4196 (2011)

    Article  MATH  Google Scholar 

  11. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equation and Inverse Scattering. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  12. Hirota, R.: Direct method of finding exact solutions of nonlinear evolution equations. In: Bullough, R., Caudrey, P. (eds.) Bäcklund Transformations, vol. 515, pp. 40–68. Springer, Berlin (1976)

    Google Scholar 

  13. Singh, M.: New exact solutions for (3+ 1)-dimensional Jimbo–Miwa equation. Nonlinear Dyn. 84(2), 875–880 (2016)

    Article  MathSciNet  Google Scholar 

  14. Miao, Q., Wang, Y., Chen, Y., Yang, Y.: PDEBellII: A Maple package for finding bilinear forms, bilinear Bäcklund transformations, Lax pairs and conservation laws of the KdV-type equations. Comput. Phys. Commun. 185(1), 357–367 (2014)

    Article  MATH  Google Scholar 

  15. Gilson, C., Lambert, F., Nimmo, J., Willox, R.: On the combinatorics of the Hirota D-operators. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 452, pp. 223–234. The Royal Society (1996)

  16. Bell, E.T.: Exponential polynomials. Ann. Math. 35(2), 258–277 (1934)

  17. Singh, M., Gupta, R.K.: Bäcklund transformations, Lax system, conservation laws and multisoliton solutions for Jimbo-Miwa equation with Bell-polynomials. Commun. Nonlinear Sci. Numer. Simul. 37, 362–373 (2016)

    Article  MathSciNet  Google Scholar 

  18. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  19. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: KP hierarchies of orthogonal and symplectic type-Transformation groups for soliton equations VI-. J. Phys. Soc. Jpn. 50(11), 3813–3818 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jimbo, M., Kashiwara, M., Miwa, T., et al.: Transformation groups for soliton equations IV. A new hierarchy of soliton equations of KP-type. Phys. D Nonlinear Phenom. 4, 343–365 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, W.-X., Fan, E.: Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 61(4), 950–959 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, W.-X., Zhu, Z.: Solving the (3+ 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm. Appl. Math. Comput. 218(24), 11871–11879 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Na, L.: Bäcklund transformation and multi-soliton solutions for the (3+ 1)-dimensional BKP equation with Bell polynomials and symbolic computation. Nonlinear Dyn. 82(1–2), 311–318 (2015)

  24. Ma, W.X., Abdeljabbar, A.: A bilinear Bäcklund transformation of a (3+ 1)-dimensional generalized KP equation. Appl. Math. Lett. 25(10), 1500–1504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wazwaz, A.-M.: Multiple-soliton solutions for a (3+ 1)-dimensional generalized KP equation. Commun. Nonlinear Sci. Numer. Simul. 17(2), 491–495 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, S., Xia, T.C.: A further improved extended Fan sub-equation method and its application to the (3+ 1)-dimensional Kadomstev-Petviashvili equation. Phys. Lett. A 356(2), 119–123 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tian, B., Gao, Y.-T.: Beyond travelling waves: a new algorithm for solving nonlinear evolution equations. Comput. Phys. Commun. 95(2), 139–142 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ya-Ning, T., Wen-Xiu, M., Wei, X.: Grammian and Pfaffian solutions as well as Pfaffianization for a (3+ 1)-dimensional generalized shallow water equation. Chin. Phys. B 21(7), 70212–70218 (2012)

    Article  Google Scholar 

  29. Ma, S.-H., Fang, J.-P., Hong-Yu, W.: Elastic and annihilation solitons of the (3+ 1)-dimensional generalized shallow water wave system. Zeitschrift für Naturforschung A 68(5), 350–354 (2013)

    Article  Google Scholar 

  30. Ma, W.-X.: Complexiton solutions to integrable equations. Nonlinear Anal. Theory Methods Appl. 63(5), e2461–e2471 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjit Singh.

Appendix

Appendix

Maple program for computing coefficients in algebraic expression

Step 1

#Define Hirota derivative;

$$\begin{aligned}&\texttt {Hirota}\_\texttt {Dyt}:=\texttt {(f,g)}\rightarrow \texttt {f}\cdot \texttt {diff(g,y,t)}\\&\quad -\texttt {diff(f,y)}\cdot \texttt {diff(g,t)}\\&\quad -\texttt {diff(f,t)}\cdot \texttt {diff(g,y)}\\&\quad +\texttt {diff(f,y,t)}\cdot \texttt {g};\\&\texttt {Hirota}\_\texttt {Dtz}:=\texttt {(f,g)}\rightarrow \texttt {f}\cdot \texttt {diff(g,t,z)}\\&\quad -\texttt {diff(f,t)}\cdot \texttt {diff(g,z)}\\&\quad -\texttt {diff(f,z)}\cdot \texttt {diff(g,t)}\\&\quad +\texttt {diff(f,t,z)}\cdot \texttt {g};\\&\texttt {Hirota}\_\texttt {Dty}:=\texttt {(f,g)}\rightarrow \texttt {f}\cdot \texttt {diff(g,t,y)}\\&\quad -\texttt {diff(f,t)}\cdot \texttt {diff(g,y)}\\&\quad -\texttt {diff(f,y)}\cdot \texttt {diff(g,t)}\\&\quad +\texttt {diff(f,t,y)}\cdot \texttt {g};\\&\texttt {Hirota}\_\texttt {Dxx}:=\texttt {(f,g)}\rightarrow \texttt {f}\cdot \texttt {diff(g,x,x)}\\&\quad -2\,\texttt {diff(f,x)}\cdot \texttt {diff(g,x)}\\&\quad +\texttt {diff(f,x,x)}\cdot \texttt {g};\\&\texttt {Hirota}\_\texttt {Dyy}:=\texttt {(f,g)}\rightarrow \texttt {f}\cdot \texttt {diff(g,y,y)}\\&\quad -2\,\texttt {diff(f,y)}\cdot \texttt {diff(g,y)}\\&\quad +\texttt {diff(f,y,y)}\cdot \texttt {g};\\&\texttt {Hirota}\_\texttt {Dzz}:=\texttt {(f,g)}\rightarrow \texttt {f}\cdot \texttt {diff(g,z,z)}\\&\quad -2\,\texttt {diff(f,z)}\cdot \texttt {diff(g,z)}+\texttt {diff(f,z,z)}\cdot \texttt {g};\\&\texttt {Hirota}\_\texttt {Dxxxy}:=\texttt {(f,g)}\rightarrow \texttt {f}\cdot \texttt {diff(g,x\$3,y)}\\&\quad -3\cdot \texttt {diff(f,x)}\cdot \texttt {diff(g,x\$2,y)}\\&\quad +3\cdot \texttt {diff(f,x\$2)}\cdot \texttt {diff(g,x,y)}\\&\quad -\texttt {diff(f,x\$3)}\cdot \texttt {diff(g,y)}\\&\quad -\texttt {diff(f,y)}\cdot \texttt {diff(g,x\$3)}\\&\quad +3\cdot \texttt {diff(f,x,y)}\cdot \texttt {diff(g,x\$2)}\\&\quad -3\cdot \texttt {diff(f,x\$2,y)}\cdot \texttt {diff(g,x)}\\&\quad +\texttt {diff(f,x\$3,y)}\cdot \texttt {g};\\&\texttt {Hirota}\_\texttt {Dxxxx}:=\texttt {(f,g)}\rightarrow \texttt {f}\cdot \texttt {diff(g,x\$4)}\\&\quad -4\cdot \texttt {diff(f,x)}\cdot \texttt {diff(g,x\$3)}\\&\quad +6\cdot \texttt {diff(f,x\$2)}\cdot \texttt {diff(g,x\$2)}\\&\quad -4\cdot \texttt {diff(f,x\$3)}\cdot \texttt {diff(g,x)}\\&\quad +\texttt {diff(f,x\$4)}\cdot \texttt {g} \end{aligned}$$

Step 2

#Define new test function;

$$\begin{aligned} \texttt {f}&:= \texttt {e}^{-\texttt {a}_{1}{} \texttt {x}-\texttt {b}_{1}{} \texttt {y}-\texttt {c}_{1}{} \texttt {t}-\texttt {d}_{1}{} \texttt {z}}+\delta _{1}\cdot \texttt {tan}(\texttt {a}_{2}{} \texttt {x}\\&\quad +\texttt {b}_{2}{} \texttt {y}+\texttt {c}_{2}{} \texttt {t}+\texttt {d}_{2}{} \texttt {z})+\delta _{2}\cdot \texttt {tanh}(\texttt {a}_{3}{} \texttt {x}\\&\quad +\texttt {b}_{3}{} \texttt {y}+\texttt {c}_{3}{} \texttt {t}+\texttt {d}_{3}{} \texttt {z})\\&\quad \delta _{3}\cdot \texttt {e}^{\texttt {a}_{1}{} \texttt {x}+\texttt {b}_{1}{} \texttt {y}+\texttt {c}_{1}{} \texttt {t}+\texttt {d}_{1}{} \texttt {z}}; \end{aligned}$$

Step 3

#Substitution of new test function into bilinear equation (23) (for example sake);

$$\begin{aligned}&(\texttt {Hirota}\_\texttt {Dzt}+\texttt {3}\cdot \texttt {Hirota}\_\texttt {Dxx}\\&\quad -\texttt {Hirota}\_\texttt {Dxxxy})\texttt {f}\cdot \texttt {f} \end{aligned}$$

#This command will generate large expression in coefficients of \(e^{\pm \xi _{1}}, e^{\pm \xi _{1}}\tan (\xi _{2})\), \(e^{\pm \xi _{1}}\tanh (\xi _{3}), \tan (\xi _{2})\tanh (\xi _{3})\)

Step 4

#Sorting terms in large expression in previous step;

$$\begin{aligned}&\texttt {sort}(\texttt {expr},\texttt {order}=\texttt {plex}[\texttt {f}_{1},\texttt {f}_{2},\ldots ],\\&\quad \texttt {ascending}); \end{aligned}$$

#This command will sort all terms of expression in appropriate order

Step 5

#Collecting coefficients from expression sorted in previous step

$$\begin{aligned}&\texttt {coeffs}(\texttt {collect}(\texttt {expr},[\texttt {f}_{1},\texttt {f}_{2},\ldots ],\\&\quad \texttt {distributed}),[\texttt {f}_{1},\texttt {f}_{2},\ldots ]); \end{aligned}$$

#This command will produce list of all coefficients in expression.

Step 6

#Solving algebraic equations

$$\begin{aligned} \texttt {solve}(\mathtt {\{list=\sim 0\}},\{a_{i}, b_{i}, c_{i}, d_{i}, \delta _{i}\}),\,\,\texttt {i=1..3} \end{aligned}$$

#This command will generate set of solutions for \(a_{i}, b_{i}, c_{i}, d_{i}, \delta _{i}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Gupta, R.K. Exact solutions for nonlinear evolution equations using novel test function. Nonlinear Dyn 86, 1171–1182 (2016). https://doi.org/10.1007/s11071-016-2955-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2955-2

Keywords

Navigation