Skip to main content
Log in

Symbolic dynamics of glider guns for some one-dimensional cellular automata

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

By exploiting the characteristic function, Lameray diagram, and forward time-\(\tau \) map of one-dimensional cellular automata (1D CAs), an empirical observation of long-term time-asymptotic behaviors of glider guns is achieved. Based on this qualitative property, the mathematical definition of glider gun for 1D CAs is proposed from the viewpoint of symbolic dynamics. Moreover, its underlying asymptotic dynamics is characterized in subtle detail, demonstrating that the dynamic evolution of glider gun converges to the limit cycle. This conclusion holds for all general 1D CAs, which is an extended discovery in both CAs and nonlinear dynamics. Meanwhile, chaotic dynamics of gliders is excavated to illustrate rich and complicated dynamical behaviors of guns. For the examples, glider guns of rules 54 and 110 are offered to present the constructive procedures described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Peng, G., Nie, F., Cao, B., Liu, C.: A driver’s memory lattice model of traffic flow and its numerical simulation. Nonlinear Dyn. 67, 1811–1815 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Goldstein, J.: The singular nature of emergent levels: suggestions for a theory of emergence. Nonlinear Dyn. 6, 293–309 (2002)

    Google Scholar 

  3. Taniguchi, Y., Suzuki, H.: A traffic cellular automaton with estimation of time to collision. J. Cell. Autom. 5, 407–416 (2013)

    MathSciNet  Google Scholar 

  4. Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1996)

    Google Scholar 

  5. Fulong, W.: Calibration of stochastic cellular automata: the application to rural-urban land conversions. Int. J. Geogr. Inf. Sci. 16, 795–818 (2002)

    Article  Google Scholar 

  6. Birgitt, S., de Andre, R.: Synchronous and asynchronous updating in cellular automata. Biosystems 51, 123–143 (1999)

    Article  Google Scholar 

  7. John, M.: The converse of Moore’s Garden-of-Eden theorem. Proc. Am. Math. Soc. 14, 685–686 (1963)

    MATH  Google Scholar 

  8. Moore, E.F.: Machine models of self-reproduction. Proc. Symp. Appl. Math. 14, 17–34 (1963)

    Article  Google Scholar 

  9. Gardner, M.: The fantastic combinations of John Conway’s new solitaire game ‘life’. Sci. Am. 223, 120–123 (1970)

    Article  Google Scholar 

  10. Hedlund, G.A.: Endomorphisms and automorphism of the shift dynamical system. Theory Comput. Syst. 3, 320–375 (1969)

    MathSciNet  MATH  Google Scholar 

  11. Cattaneo, G., Finelli, M., Margara, L.: Investigating topological chaos by elementary cellular automata dynamics. Theor. Comput. Sci. 1, 219–241 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gianpiero, C., Luciano, M.: Generalized sub-shifts in elementary cellular automata: the “strange case” of chaotic rule 180. Theor. Comput. Sci. 1, 171–187 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Hurley, M.: Attractors in cellular automata. Ergod. Theory Dyn. Syst. 10, 131–140 (1990)

    MathSciNet  MATH  Google Scholar 

  14. K\((^{\circ }\text{u})\)rka, P.: On the measure attractor of a cellular automaton. Discret. Contin. Dyn. Syst. (suppl.), 524–535 (2005)

  15. Culik, K., Pachl, J., Yu, S.: On the limit set of cellular automata. SIAM J. Comput. 18, 831–842 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maass, A.: On sofic limit sets of cellular automata. Ergod. Theory Dyn. Syst. 15, 663–684 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Formenti, E., Kurka, P.: Subshift attractors of cellular automata. Nonlinearity 20, 1–13 (2007)

    Article  MathSciNet  Google Scholar 

  18. Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific, Singapore (1986)

    MATH  Google Scholar 

  19. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

  20. Chua, L.O., Sbitnev, V.I., Yoon, S.: A nonlinear dynamics perspective of Wolfram’s new kind of science part IV: from bernoulli shift to 1/f spectrum. Int. J. Bifurc. Chaos 15, 1045–1183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chua, L.O., Pazienza, G.E.: A nonlinear dynamics perspective of Wolfram’s new kind of science part XIII: bernoulli \(\sigma _\tau \)-shift rules. Int. J. Bifurc. Chaos 20, 1859–1903 (2010)

  22. Chua, L.O., Pazienza, G.E.: A nonlinear dynamics perspective of Wolfram’s new kind of science part XIV: more bernoulli \(\sigma _\tau \)-shift rules. Int. J. Bifurc. Chaos 20, 2253–2325 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wuensche, A., Lesser, M.: The Global Dynamics of Cellular Automata. Santa Fe Institute Studies in the Sciences of Complexity. Addison-Wesley, Boston (1992)

    MATH  Google Scholar 

  24. Chen, F.Y., Jin, W.F., Chen, G.R., Chen, F.F., Chen, L.: Chaos of elementary cellular automata rule 42 of Wolfram’s class II. Chaos 19, 013140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jin, W.F., Chen, F.Y.: Topological chaos of universal elementary cellular automata rule. Nonlinear Dyn. 63, 217–222 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Culik, K., Hurd, L.P., Yu, S.: Computation theoretic aspects of cellular automata. Phys. D 45, 357–378 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Adamatzky, A., Wuensche, A., Benjamin, D.: Glider-based computing in reaction-diffusion hexagonal cellular automata. Chaos Sol. Fract. 27, 287–295 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Genaro, J.M., Adamatzky, A., Harold, V.M.: Phenomenology of glider collisions in cellular automaton rule 54 and associated logical gates. Chaos Sol. Fract. 28, 100–111 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Martinez, G.J., Mcintosh, H.V., Mora, J.: Gliders in rule 110. Int. J. Unconv. Comput. 2, 1–49 (2006)

    Google Scholar 

  30. Genaro, J.M., Harold, V.M., Juan, C., Sergio, V.: Determining a regular language by glider-based structures called phases fi-1 in rule 110. J. Cell. Autom. 3, 231–270 (2008)

  31. Adamatzky, A.: Collision-based Computing. Springer, London (2002)

    Book  MATH  Google Scholar 

  32. Adamatzky, A., Wuensche, A., Costello, B.: Glider-based computing in reaction-diffusion hexagonal cellular automata. Chaos Sol. Fract. 27, 287–295 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Jin, W.F., Chen, F.Y., Chen, G.R.: Glider implies Li-Yorke chaos for one-dimensional cellular automata. J. Cell. Autom. 9, 315–329 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Wuensche, A., Adamatzky, A.: On spiral glider-guns in hexagonal cellular automata: activator-inhibitor paradigm. Int. J. Mod. Phys. C 17, 1009–1026 (2006)

    Article  MATH  Google Scholar 

  36. de Ben, L.C., Rita, T., Christopher, S., Adamatzky, A., Larry, B.: Implementation of glider guns in the light-sensitive Belousov–Zhabotinsky medium. Phys. Rev. E 79, 026114 (2009)

  37. Gomez, S.J.M., Wuensche, A.: The X-Rule: universal cmputation in a non-isotropic life-like cellular automaton. J. Cell. Autom. 10, 261–294 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Kitchens, B.: Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by NSFC (Grants No. 11171084 and 60872093) and Foundation of Zhejiang Education Department (Grant No. Y201534584).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, W., Chen, F. Symbolic dynamics of glider guns for some one-dimensional cellular automata. Nonlinear Dyn 86, 941–952 (2016). https://doi.org/10.1007/s11071-016-2935-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2935-6

Keywords

Navigation