Abstract
By exploiting the characteristic function, Lameray diagram, and forward time-\(\tau \) map of one-dimensional cellular automata (1D CAs), an empirical observation of long-term time-asymptotic behaviors of glider guns is achieved. Based on this qualitative property, the mathematical definition of glider gun for 1D CAs is proposed from the viewpoint of symbolic dynamics. Moreover, its underlying asymptotic dynamics is characterized in subtle detail, demonstrating that the dynamic evolution of glider gun converges to the limit cycle. This conclusion holds for all general 1D CAs, which is an extended discovery in both CAs and nonlinear dynamics. Meanwhile, chaotic dynamics of gliders is excavated to illustrate rich and complicated dynamical behaviors of guns. For the examples, glider guns of rules 54 and 110 are offered to present the constructive procedures described in this paper.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Peng, G., Nie, F., Cao, B., Liu, C.: A driver’s memory lattice model of traffic flow and its numerical simulation. Nonlinear Dyn. 67, 1811–1815 (2012)
Goldstein, J.: The singular nature of emergent levels: suggestions for a theory of emergence. Nonlinear Dyn. 6, 293–309 (2002)
Taniguchi, Y., Suzuki, H.: A traffic cellular automaton with estimation of time to collision. J. Cell. Autom. 5, 407–416 (2013)
Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1996)
Fulong, W.: Calibration of stochastic cellular automata: the application to rural-urban land conversions. Int. J. Geogr. Inf. Sci. 16, 795–818 (2002)
Birgitt, S., de Andre, R.: Synchronous and asynchronous updating in cellular automata. Biosystems 51, 123–143 (1999)
John, M.: The converse of Moore’s Garden-of-Eden theorem. Proc. Am. Math. Soc. 14, 685–686 (1963)
Moore, E.F.: Machine models of self-reproduction. Proc. Symp. Appl. Math. 14, 17–34 (1963)
Gardner, M.: The fantastic combinations of John Conway’s new solitaire game ‘life’. Sci. Am. 223, 120–123 (1970)
Hedlund, G.A.: Endomorphisms and automorphism of the shift dynamical system. Theory Comput. Syst. 3, 320–375 (1969)
Cattaneo, G., Finelli, M., Margara, L.: Investigating topological chaos by elementary cellular automata dynamics. Theor. Comput. Sci. 1, 219–241 (2000)
Gianpiero, C., Luciano, M.: Generalized sub-shifts in elementary cellular automata: the “strange case” of chaotic rule 180. Theor. Comput. Sci. 1, 171–187 (1998)
Hurley, M.: Attractors in cellular automata. Ergod. Theory Dyn. Syst. 10, 131–140 (1990)
K\((^{\circ }\text{u})\)rka, P.: On the measure attractor of a cellular automaton. Discret. Contin. Dyn. Syst. (suppl.), 524–535 (2005)
Culik, K., Pachl, J., Yu, S.: On the limit set of cellular automata. SIAM J. Comput. 18, 831–842 (1989)
Maass, A.: On sofic limit sets of cellular automata. Ergod. Theory Dyn. Syst. 15, 663–684 (1995)
Formenti, E., Kurka, P.: Subshift attractors of cellular automata. Nonlinearity 20, 1–13 (2007)
Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific, Singapore (1986)
Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)
Chua, L.O., Sbitnev, V.I., Yoon, S.: A nonlinear dynamics perspective of Wolfram’s new kind of science part IV: from bernoulli shift to 1/f spectrum. Int. J. Bifurc. Chaos 15, 1045–1183 (2005)
Chua, L.O., Pazienza, G.E.: A nonlinear dynamics perspective of Wolfram’s new kind of science part XIII: bernoulli \(\sigma _\tau \)-shift rules. Int. J. Bifurc. Chaos 20, 1859–1903 (2010)
Chua, L.O., Pazienza, G.E.: A nonlinear dynamics perspective of Wolfram’s new kind of science part XIV: more bernoulli \(\sigma _\tau \)-shift rules. Int. J. Bifurc. Chaos 20, 2253–2325 (2010)
Wuensche, A., Lesser, M.: The Global Dynamics of Cellular Automata. Santa Fe Institute Studies in the Sciences of Complexity. Addison-Wesley, Boston (1992)
Chen, F.Y., Jin, W.F., Chen, G.R., Chen, F.F., Chen, L.: Chaos of elementary cellular automata rule 42 of Wolfram’s class II. Chaos 19, 013140 (2009)
Jin, W.F., Chen, F.Y.: Topological chaos of universal elementary cellular automata rule. Nonlinear Dyn. 63, 217–222 (2011)
Culik, K., Hurd, L.P., Yu, S.: Computation theoretic aspects of cellular automata. Phys. D 45, 357–378 (1990)
Adamatzky, A., Wuensche, A., Benjamin, D.: Glider-based computing in reaction-diffusion hexagonal cellular automata. Chaos Sol. Fract. 27, 287–295 (2006)
Genaro, J.M., Adamatzky, A., Harold, V.M.: Phenomenology of glider collisions in cellular automaton rule 54 and associated logical gates. Chaos Sol. Fract. 28, 100–111 (2006)
Martinez, G.J., Mcintosh, H.V., Mora, J.: Gliders in rule 110. Int. J. Unconv. Comput. 2, 1–49 (2006)
Genaro, J.M., Harold, V.M., Juan, C., Sergio, V.: Determining a regular language by glider-based structures called phases fi-1 in rule 110. J. Cell. Autom. 3, 231–270 (2008)
Adamatzky, A.: Collision-based Computing. Springer, London (2002)
Adamatzky, A., Wuensche, A., Costello, B.: Glider-based computing in reaction-diffusion hexagonal cellular automata. Chaos Sol. Fract. 27, 287–295 (2006)
Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004)
Jin, W.F., Chen, F.Y., Chen, G.R.: Glider implies Li-Yorke chaos for one-dimensional cellular automata. J. Cell. Autom. 9, 315–329 (2014)
Wuensche, A., Adamatzky, A.: On spiral glider-guns in hexagonal cellular automata: activator-inhibitor paradigm. Int. J. Mod. Phys. C 17, 1009–1026 (2006)
de Ben, L.C., Rita, T., Christopher, S., Adamatzky, A., Larry, B.: Implementation of glider guns in the light-sensitive Belousov–Zhabotinsky medium. Phys. Rev. E 79, 026114 (2009)
Gomez, S.J.M., Wuensche, A.: The X-Rule: universal cmputation in a non-isotropic life-like cellular automaton. J. Cell. Autom. 10, 261–294 (2015)
Kitchens, B.: Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts. Springer, Berlin (1998)
Acknowledgments
This research was jointly supported by NSFC (Grants No. 11171084 and 60872093) and Foundation of Zhejiang Education Department (Grant No. Y201534584).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jin, W., Chen, F. Symbolic dynamics of glider guns for some one-dimensional cellular automata. Nonlinear Dyn 86, 941–952 (2016). https://doi.org/10.1007/s11071-016-2935-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-016-2935-6