Li, J.B., Liu, Z.R.: Smooth and non-smooth traveling waves in a nonlinearly dispersive equation. Appl. Math. Model. 25, 41–56 (2000)
Article
MATH
Google Scholar
Guo, B.L., Liu, Z.R.: Periodic cusp wave solutions and single-solitons for the b-equation. Chaos Solitons Fractals 23, 1451–1463 (2005)
MathSciNet
MATH
Google Scholar
Liu, Z.R., Guo, B.L.: Periodic blow-up solutions and their limit forms for the generalized Camassa–Holm equation. Prog. Nat. Sci. 18, 259–266 (2008)
MathSciNet
Article
Google Scholar
Zhang, L.N., Li, J.B.: Dynamical behavior of loop solutions for the K(2,2) equation. Phys. Lett. A 375, 2965–2968 (2011)
MathSciNet
Article
MATH
Google Scholar
Meng, Q., He, B., Long, Y., Li, Z.Y.: New exact periodic wave solutions for the Dullin–Gottwald–Holm equation. Appl. Math. Comput. 218, 4533–4537 (2011)
MathSciNet
MATH
Google Scholar
Tchakoutio Nguetcho, A.S., Li, J.B., Bilbault, J.M.: Bifurcations of phase portraits of a singular nonlinear equation of the second class. Commun. Nonlinear Sci. Numer. Simul. 19, 2590–2601 (2014)
MathSciNet
Article
Google Scholar
Li, J.B.: Exact cuspon and compactons of the Novikov equation. Int. J. Bifur. Chaos 24, 1450037-1-8 (2014)
MathSciNet
MATH
Google Scholar
Song, M.: Nonlinear wave solutions and their relations for the modified Benjamin–Bona–Mahony equation. Nonlinear Dyn. 78, 1180–1185 (2015)
MathSciNet
Google Scholar
He, B., Meng, Q.: Explicit kink-like and compacton-like wave solutions for a generalized KdV equation. Nonlinear Dyn. 82, 703–711 (2015)
MathSciNet
Article
Google Scholar
Rogers, C., Shadwick, W.R.: Bäcklund Transformation and their Applications. Academic, New York (1982)
MATH
Google Scholar
Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Soliton Theory and Its Geometric Applications. Shanghai Scientific and Technical Publishers, Shanghai (1999)
Google Scholar
Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, London (1991)
Book
MATH
Google Scholar
Hirota, R.: Direct Method in Soliton Theory. Springer, Berlin (1980)
Book
Google Scholar
Cantwell, B.J.: Introduction to Symmetry Analysis. Cambridge University Press, New York (2002)
MATH
Google Scholar
Liu, H.Z., Li, J.B.: Painlevé analysis, complete Lie group classifications and exact solutions to the time-dependent coefficients Gardner types of equations. Nonlinear Dyn. 80, 515–527 (2015)
Article
MATH
Google Scholar
Triki, H., Kara, A.H., Bhrawy, A.H., Biswas, A.: Soliton solution and conservation law of Gear–Grimshaw model for shallow water waves. Acta Phys. Pol. A 125, 1099–1106 (2014)
Article
Google Scholar
Abdelkawy, M.A., Bhrawy, A.H., Zerrad, E., Biswas, A.: Application of tanh method to complex coupled nonlinear evolution equations. Acta Phys. Pol. A 129, 278–283 (2016)
Article
Google Scholar
Triki, H., Mirzazadeh, M., Bhrawy, A.H., Razborova, P., Biswas, A.: Solitons and other solutions to long-wave short-wave interaction equation. Rom. J. Phys. 60, 72–86 (2015)
Google Scholar
Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in magneto-optic waveguides with spatio-temporal dispersion. Frequenz 68, 445–451 (2014)
Article
Google Scholar
Li, J.B., Dai, H.H.: On the Study of Singular Nonlinear Traveling Wave Equation: Dynamical System Approach. Science Press, Bejing (2007)
Google Scholar
Li, J.B.: Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions. Science Press, Bejing (2013)
Google Scholar
He, J.H.: Exp-function method for nonlinear wave equations. Chaos Soliton Fractals 30, 700–708 (2006)
MathSciNet
Article
MATH
Google Scholar
Bhrawy, A.H., Biswas, A., Javidi, M., Ma, W.X., Pinar, Z., Yildirim, A.: New solutions for (1+1)-dimensional and (2+1)-dimensional Kaup-Kupershmidt equations. Results Math. 63, 675–686 (2013)
MathSciNet
Article
MATH
Google Scholar
Biswas, A., Bhrawy, A.H., Abdelkawy, M.A., Alshaery, A.A., Hilal, E.M.: Symbolic computation of some nonlinear fractional differential equations. Rom. J. Phys. 59, 433–442 (2014)
Google Scholar
Cohen,J. S.: Computer Algebra and Symbolic Computation: Mathematical Methods. AK Peters, Ltd. ISBN 978-1-56881-159-8 (2003)
He, B., Meng, Q., Long, Y., Rui, W.G.: New exact solutions of the double sine-Gordon equation using symbolic computations. Appl. Math. Comput. 186, 1334–1346 (2007)
MathSciNet
MATH
Google Scholar
Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi’s elliptic function method. Commun. Nonlinear Sci. Numer. Simul. 18, 915–925 (2013)
MathSciNet
Article
MATH
Google Scholar
Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrö dinger equations. Nonlinear Dyn. 84, 1553–1567 (2016)
MathSciNet
Article
Google Scholar
Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations. Calcolo 53, 1–17 (2016)
MathSciNet
Article
MATH
Google Scholar
Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 247, 30–46 (2014)
Genga, X.G., Xue, B.: Soliton solutions and quasiperiodic solutions of modified Korteweg-de Vries type equations. J. Math. Phys 51, 063516-1-15 (2010)
Gürses, M., Pekcan, A.: 2+1 KdV(N) equations. J. Math. Phys 52, 083516-1-9 (2011)
Article
MATH
Google Scholar
Wazwaz, A.M.: A modified KdV-type equation that admits a variety of travelling wave solutions: kinks, solitons, peakons and cuspons. Phys. Scr 86, 045501-1-6 (2012)
MATH
Google Scholar
Mothibi, D.M., Khalique, C.M.: On the exact solutions of a modified Kortweg de Vries type equation and higher-order modified Boussinesq equation with damping term. Adv. Differ. Equ 2013, 166-1-7 (2013)
MathSciNet
Article
Google Scholar
Bogning, J.R.: Pulse soliton solutions of the modified KdV and Born-Infeld equations. Int. J. Mod. Nonlinear Theory Appl. 2, 135–140 (2013)
Article
Google Scholar
Güner, O., Bekir, A., Karaca, F.: Optical soliton solutions of nonlinear evolution equations usingansatz method. Optik 127, 131–134 (2016)
Article
Google Scholar
Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Physicists. Springer, Berlin (1971)
Book
MATH
Google Scholar
Chamdrasekharan, K.: Elliptic Functions. Springer, Berlin (1985)
Book
Google Scholar