Skip to main content
Log in

On the control and stability of variable-order mechanical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work investigates the control and stability of nonlinear mechanics described by a system of variable-order (VO) differential equations. The VO behavior results from damping with order varying continuously on the bounded domain. A model-predictive method is presented for the development of a time-varying nominal control signal generating a desirable nominal state trajectory in the finite temporal horizon. A complimentary method is also presented for development of the time-varying control of deviations from the nominal trajectory. The latter method is extended into the time-invariant infinite temporal horizon. Simulation error dynamics of a reference configuration are compared over a range of damping coefficient values. Using a normal mode analysis, a fractional-order eigenvalue relation—valid in the infinite horizon—is derived for the dependence of the system stability on the damping coefficient. Simulations confirm the resulting analytical expression for perturbations of order much less than unity. It is shown that when deviations are larger, the fundamental stability characteristics of the controlled VO system carry dependence on the initial perturbation and that this feature is absent from a corresponding constant (integer or fractional) order system. It is then empirically demonstrated that the analytically obtained critical damping value accurately defines—for simulations over the entire temporal horizon—a boundary between rapidly stabilizing solutions and those which persistently oscillate for longtimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69–79 (1994)

    Article  Google Scholar 

  2. Atkinson, K.E.: The numerical solution of Fredholm integral equations of the second kind. SIAM J. Numer. Anal. 4(3), 337–348 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14(2), 304–311 (1991)

    Article  Google Scholar 

  4. Balachandran, K., Park, J.Y., Anandhi, E.R.: Local controllability of quasilinear integrodifferential evolution systems in Banach spaces. J. Math. Anal. Appl. 258(1), 309–319 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bewley, T.R.: Numerical Renaissance: Simulation, Optimization, and Control. Renaissance Press, San Diego (2014)

    Google Scholar 

  6. Boubaker, O.: The inverted pendulum: a fundamental benchmark in control theory and robotics. In: Proceedings of the International Conference on Education and e-Learning Innovations, pp. 1–6 (2012)

  7. Bugeja, M.: Non-linear swing-up and stabilizing control of an inverted pendulum system. In: Proceedings of the IEEE Region 8 EUROCON 2003. Computer as a Tool., vol. 2, pp. 437–441 (2003)

  8. Calvet, J.P., Arkun, Y.: Stabilization of feedback linearized nonlinear processes under bounded perturbations. In: Proceedings of the American Control Conference (1989)

  9. Calvet, J.P., Arkun, Y.: Design of \({P}\) and \({PI}\) stabilizing controllers for quasi-linear systems. Comput. Chem. Eng. 14(4–5), 415–426 (1990)

    Article  Google Scholar 

  10. Campbell, S.A., Crawford, S., Morris, K.: Friction and the inverted pendulum stabilization problem. J. Dyn. Sys. Meas. Control 130(5), 054502-1–054502-7 (2008)

  11. Caputo, M.: Linear models of dissipation whose \({Q}\) is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13(5), 529–539 (1967)

    Article  MathSciNet  Google Scholar 

  12. Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(1), 134–147 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal systems as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Y., Liu, L., Li, X., Sun, Y.: Numerical solution for the variable order time fractional diffusion equation with bernstein polynomials. CMES-Comput. Model. Eng. 97(1), 81–100 (2014)

    MathSciNet  Google Scholar 

  15. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12(11–12), 692–703 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coimbra, C.F.M., L’Espérance, D., Lambert, R.A., Trolinger, J.D., Rangel, R.H.: An experimental study on stationary history effects in high-frequency Stokes flows. J. Fluid Mech. 504, 353–363 (2004)

    Article  MATH  Google Scholar 

  17. Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56(1–2), 145–157 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diaz, G., Coimbra, C.F.M.: Dynamics and control of nonlinear variable order oscillators. In: Evans, T. (ed.) Nonlinear Dynamics, Chapter 6, pp. 129–144. InTech, Rijeka (2010)

  19. Drazin, P.G.: Nonlinear Systems, 2nd edn. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  20. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  21. Durand, S., Guerrero-Castellanos, J.F., Marchand, N., Guerrero-Sánchez, W.F.: Event-based control of the inverted pendulum: swing up and stabilization. J. Control Eng. Appl. Inform. 15(3), 96–104 (2013)

    Google Scholar 

  22. Hartley, T.T., Lorenzo, C.F.: Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29(1), 201–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hwang, C., Leu, J.F., Tsay, S.Y.: A note on time-domain simulation of feedback fractional-order systems. IEEE Trans. Autom. Control 47(4), 625–631 (2002)

    Article  MathSciNet  Google Scholar 

  24. Ingman, D., Suzdalnitsky, J., Zeifman, M.: Constitutive dynamic-order model for nonlinear contact phenomena. J. Appl. Mech. 67(2), 383–390 (1999)

    Article  MATH  Google Scholar 

  25. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  26. L’Espérance, D., Coimbra, C.F.M., Trolinger, J.D., Rangel, R.H.: Experimental verification of fractional history effects on the viscous dynamics of small spherical particles. Exp. Fluids 38(1), 112–116 (2005)

    Article  Google Scholar 

  27. Li, Y., Chen, Y.: Fractional order linear quadratic regulator. In: Proceedings of the IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, pp. 363–368 (2008)

  28. Lorenzo, C.F., Hartley, T.T.: Initialization in fractional order systems. In: Proceedings of the European Control Conference, pp. 1471–1476 (2001)

  29. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1), 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  31. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  32. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Controls. Advances in Industrial Control. Springer, London (2010)

  33. Oldham, K.B., Spanier, J.: The replacement of Fick’s laws by a formulation involving semidifferentiation. J. Electroanal. Chem. Interfacial Electrochem. 26(2—-3), 331–341 (1970)

    Article  Google Scholar 

  34. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  35. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  36. Podlubny, I.: Fractional-order systems and \({P}{I}^{\lambda }{D}^{\mu }\)-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ramirez, L.E.S., Coimbra, C.F.M.: On the selection and meaning of variable order operators for dynamic modeling. Int. J. Differ. Equ. 2010, Article ID 846107 (2010)

  38. Ross, B.: The development of fractional calculus 1695–1900. Hist. Math. 4(1), 75–89 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ross, B., Samko, S.G.: Fractional integration operator of variable order in the Hölder spaces \({H}^{\lambda (x)}\). Int. J. Math. Math. Sci. 18(4), 777–788 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1(4), 277–300 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218(22), 10861–10870 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Soon, C.M., Coimbra, C.F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14(6), 378–389 (2005)

    Article  MATH  Google Scholar 

  43. Sun, Z., Tsao, T.C.: Control of linear systems with nonlinear disturbance dynamics. In: Proceedings of the American Control Conference, vol. 4, pp. 3049–3054 (2001)

  44. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51(2), 294–298 (1984)

    Article  MATH  Google Scholar 

  45. Wang, L., Ma, Y., Yang, Y.: Legendre polynomials method for solving a class of variable order fractional differential equation. CMES-Comput. Model. Eng. 101(2), 97–111 (2014)

    MathSciNet  Google Scholar 

  46. Westerlund, S.: Dead matter has memory!. Phys. Scr. 43(2), 174–179 (1991)

    Article  Google Scholar 

  47. Yang, J.H., Shim, S.Y., Seo, J.H., Lee, Y.S.: Swing-up control for an inverted pendulum with restricted cart rail length. Int. J. Control Autom. 7(4), 674–680 (2009)

    Article  Google Scholar 

  48. Zhang, H., Liu, F., Zhuang, P., Turner, I., Anh, V.: Numerical analysis of a new space-time variable fractional order advection-dispersion equation. Appl. Math. Comput. 242, 541–550 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, H., Shen, S.: The numerical simulation of space–time variable fractional order diffusion equation. Numer. Math. Theor. Methods Appl. 6(4), 571–585 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. M. Coimbra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orosco, J., Coimbra, C.F.M. On the control and stability of variable-order mechanical systems. Nonlinear Dyn 86, 695–710 (2016). https://doi.org/10.1007/s11071-016-2916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2916-9

Keywords

Navigation