Skip to main content
Log in

Stick–slip vibration of an oscillator with damping

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a new criterion for the occurrence of stick–slip vibration in an oscillator excited by a moving belt. Equations of motion were derived for a single-degree-of-freedom oscillator excited by the friction between the oscillator mass and a moving belt, considering two types of velocity-dependent friction models: exponential and polynomial. Based on the derived equations, dynamic responses were analyzed for various damping values, and it was found that the damping value determines the classification of oscillator motion among stick–slip, pure slip, and damped slip motions. Furthermore, a criterion for the occurrence of stick–slip motion, expressed in an integral form, was derived in terms of friction and damping forces. Using the least squares method, closed forms for the damping values to determine the occurrence of stick–slip vibration were obtained as functions of normal force, relative speed between contact surfaces, and friction parameters. In addition, the effects of the belt speed and of friction parameters on the occurrence of stick–slip vibration were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nosyreva, E.P., Molinari, A.: Analysis of nonlinear vibrations in metal cutting. Int. J. Mech. Sci. 40(8), 735–748 (1998)

    Article  MATH  Google Scholar 

  2. Liu, X., Vlajic, N., Long, X., Meng, G., Balachandran, B.: Nonlinear motion of a flexible rotor with a drill bit: stick-slip and delay effects. Nonlinear Dyn. 72(1–2), 61–77 (2013)

    Article  MathSciNet  Google Scholar 

  3. Stelter, P.: Nonlinear vibrations of structures induced by dry friction. Nonlinear Dyn. 3(5), 329–345 (1992)

    Article  Google Scholar 

  4. Trapp, M., Chen, F.: Automotive buzz, squeak and rattle: mechanisms, analysis, evaluation and prevention. Elsevier, Amsterdam (2011)

    Google Scholar 

  5. Haessig, D.A., Friedland, B.: On the modeling and simulation of friction. J. Dyn. Syst. Meas. Control 113, 354–362 (1991)

    Article  Google Scholar 

  6. Leine, R.I., Van Campen, D.H., De Kraker, A.: Stick-slip vibrations induced by alternate friction models. Nonlinear Dyn. 16(1), 41–54 (1998)

    Article  MATH  Google Scholar 

  7. Berger, E.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55, 535–577 (2002)

    Article  Google Scholar 

  8. Popp, K., Stelter, P.: Stick-slip vibrations and chaos. Philos. Trans. R. Soc. A 332, 89–105 (1990)

    Article  MATH  Google Scholar 

  9. Gao, C., Kuhlmann-Wilsdorf, D., Makel, D.D.: The dynamic analysis of stick-slip motion. Wear 173, 1–12 (1994)

    Article  Google Scholar 

  10. Galvanetto, U., Knudsen, C.: Event maps in a stick-slip system. Nonlinear Dyn. 13(2), 99–115 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feeny, B.F., Liang, J.W.: Phase-space reconstructions and stick-slip. Nonlinear Dyn. 13(1), 39–57 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Van de Vrande, B.L., Van Campen, D.H., De Kraker, A.: An approximate analysis of dry-friction-induced stick-slip vibrations by a smoothing procedure. Nonlinear Dyn. 19(2), 157–169 (1999)

    MATH  Google Scholar 

  13. Ouyang, H., Mottershead, J., Cartmell, M., Brookfield, D.: Friction-induced vibration of an elastic slider on a vibrating disc. Int. J. Mech. Sci. 41(3), 325–336 (1999)

    Article  MATH  Google Scholar 

  14. Awrejcewicz, J., Dzyubak, L., Grebogi, C.: Estimation of chaotic and regular (stick–slip and slip–slip) oscillations exhibited by coupled oscillators with dry friction. Nonlinear Dyn. 42(4), 383–394 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding, W., Shichao, F., Mingwan, L.: A new criterion for occurrence of stick–slip motion in drive mechanism. Acta Mech. Sin. 16, 273–281 (2000)

    Article  Google Scholar 

  16. Li, Q., Chen, Y., Qin, Z.: Existence of stick–slip periodic solutions in a dry friction oscillator. Chin. Phys. Lett. 28, 030502 (2011)

    Article  Google Scholar 

  17. Thomsen, J.J., Fidlin, A.: Analytical approximations for stick–slip vibration amplitudes. Int. J. Nonlinear Mech. 38, 389–403 (2003)

    Article  MATH  Google Scholar 

  18. Le Rouzic, J., Le Bot, A., Perret-Liaudet, J., Guibert, M., Rusanov, A., Douminge, L., Bretagnol, F., Mazuyer, D.: Friction-induced vibration by Stribeck’s law: application to wiper blade squeal noise. Tribol. Lett. 49, 563–572 (2013)

    Article  Google Scholar 

  19. Galvanetto, U., Bishop, S.R.: Dynamics of a simple damped oscillator undergoing stick–slip vibrations. Meccanica 34(5), 337–347 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nakano, K., Maegawa, S.: Occurrence limit of stick–slip: dimensionless analysis for fundamental design of robust-stable systems. Lubr. Sci. 22(1), 1–18 (2010)

    Google Scholar 

  21. Liu, C.S., Chang, W.T.: Frictional behavior of a belt-driven and periodically excited oscillator. J. Sound Vib. 258(2), 247–268 (2002)

  22. Kang, J., Krousgrill, C.M., Sadeghi, F.: Oscillation pattern of stick–slip vibrations. Int. J. Non-Linear Mech. 44(7), 820–828 (2009)

    Article  Google Scholar 

  23. Stark, R.W., Schitter, G., Stemmer, A.: Velocity dependent friction laws in contact mode atomic force microscopy. Ultramicroscopy 100, 309–317 (2004)

    Article  Google Scholar 

  24. Abdo, J., Abouelsoud, A.A.: Analytical approach to estimate amplitude of stick–slip oscillation. J. Theor. Appl. Mech. 49(4), 971–986 (2011)

    Google Scholar 

  25. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div-ASCE 85(3), 67–94 (1959)

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Research Foundation of Korea (NRF), funded by the Korean government (MEST) (No. 2011-0017408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintai Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, HI., Chung, J. Stick–slip vibration of an oscillator with damping. Nonlinear Dyn 86, 257–267 (2016). https://doi.org/10.1007/s11071-016-2887-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2887-x

Keywords

Navigation