Skip to main content

A new multi-anticipative car-following model with consideration of the desired following distance

Abstract

We propose in this paper an extension of the multi-anticipative optimal velocity car-following model to consider explicitly the desired following distance. The model on the following vehicle’s acceleration is formulated as a linear function of the optimal velocity and the desired distance, with reaction-time delay in elements. The linear stability condition of the model is derived. The results demonstrate that the stability of traffic flow is improved by introducing the desired following distance, increasing the time gap in the desired following distance or decreasing the reaction-time delay. The simulation results show that by taking into account the desired following distance as well as the optimal velocity, the multi-anticipative model allows longer reaction-time delay in achieving stable traffic flows.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

n :

Index of vehicle

t :

Time instant (s)

m :

Number of preceding vehicles considered

\(x_{n}(t)\) :

Position of vehicle n at time t (m)

\(\Delta x_{n+j,n}(t)\) :

Headway \(x_{n+j}(t)-x_{n}(t)\) (m) between the vehicle n and the leading vehicle \(n+j\)

\(v_{n}(t)\) :

Velocity of vehicle n at time t (m/s)

\(\Delta x_{n}^\mathrm{des}(t)\) :

Desired following distance (m)

\(\alpha \) :

Sensitivity coefficient of a driver to the difference between the optimal velocities and the actual velocity (1/s)

\(\beta \) :

Sensitivity coefficient of a driver to the distance (\(1/\mathrm {s}^{2}\))

\(t_\mathrm{d}\) :

Reaction-time delay of drivers (s)

\(p_{j}\) :

Weight of the optimal velocity function

\(q_{j}\) :

Weight of the distance \(\Delta x_{n+j,n}(t-t_{d})/j\)

\(s_{0}\) :

Stopping distance, including vehicle length (m)

T :

Time gap (s)

a and b :

Step function parameters for modelling \(\beta \)

\(s_\mathrm{c}\) :

Critical distance (m) in the step function of \(\beta \)

\(V_{1}\) and \(V_{2}\) :

Parameters of the optimal velocity function (m/s)

\(C_{1}\) :

Parameter of the optimal velocity function (\(\mathrm {m}^{-1}\))

\(C_{2}\) :

Parameter of the optimal velocity function

\(L_\mathrm{c}\) :

Average length of vehicles (m)

References

  1. Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. F 2, 181–196 (1999)

    Article  Google Scholar 

  2. Aghabayk, K., Sarvi, M., Young, W.: A state-of-the-art review of car-following models with particular considerations of heavy vehicles. Transp. Rev. 35, 82–105 (2015)

    Article  Google Scholar 

  3. Bonsall, P., Liu, R., Young, W.: Modelling safety-related driving behaviour-impact of parameter values. Transp. Res. A 39, 425–444 (2005)

    Google Scholar 

  4. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  5. Wang, J., Liu, R., Montgomery, F.O.: A car following model for motorway traffic. Transp. Res. Rec. 1934, 33–42 (2005)

    Article  Google Scholar 

  6. Gazis, D.C., Herman, R., Rothery, R.W.: Nonlinear follow-the-leader models of traffic flow. Oper. Res. 9, 545–567 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Oper. Res. 6, 165–184 (1958)

    Article  MathSciNet  Google Scholar 

  8. Helly, W.: Simulation of bottlenecks in single lane traffic flow. In: Proceedings of the symposium on theory of traffic flow, pp. 207–238 (1959)

  9. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamics model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  MATH  Google Scholar 

  10. Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58, 133–138 (1998)

    Article  Google Scholar 

  11. Jiang, R., Wu, Q.S., Zhu, Z.J.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101 (2001)

    Article  Google Scholar 

  12. Tang, T.Q., Wang, Y.P., Yang, X.B., Wu, Y.H.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70, 1397–1405 (2012)

    Article  MathSciNet  Google Scholar 

  13. Tang, T.Q., Shi, W.F., Shang, H.Y., Wang, Y.P.: A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn. 76, 2017–2023 (2014)

    Article  Google Scholar 

  14. Zheng, L.J., Tian, C., Sun, D.H., Liu, W.N.: A new car-following model with consideration of anticipation driving behavior. Nonlinear Dyn. 70, 1205–1211 (2012)

    Article  MathSciNet  Google Scholar 

  15. Kang, Y.R., Sun, D.H., Yang, S.H.: A new car-following model considering driver’s individual anticipation behavior. Nonlinear Dyn. 82, 1293–1302 (2015)

    Article  MathSciNet  Google Scholar 

  16. Nagatani, T.: Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction. Phys. Rev. E 60, 6395–6401 (1999)

    Article  Google Scholar 

  17. Ge, H.X., Dai, S.Q., Dong, L.Y., Xue, Y.: Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application. Phys. Rev. E 70, 066134 (2004)

    Article  Google Scholar 

  18. Nagatani, T., Nakanishi, K., Emmerich, H.: Phase transition in a difference equation model of traffic flow. J. Phys. A 31, 5431–5438 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wilson, R.E., Berg, P., Hooper, S., Lunt, G.: Many-neighbour interaction and non-locality in traffic models. Eur. Phys. J. B 39, 397–408 (2004)

    Article  Google Scholar 

  20. Chen, J.Z., Shi, Z.K., Hu, Y.M.: Stabilization analysis of a multiple look-ahead model with driver reaction delays. Int. J. Mod. Phys. C 23, 1250048 (2012)

    Article  MATH  Google Scholar 

  21. Yu, L., Shi, Z.K., Zhou, B.C.: Kink-antikink density wave of an extended car-following model in a cooperative driving system. Commun. Nonlinear Sci. Numer. Simul. 13, 2167–2176 (2008)

    Article  Google Scholar 

  22. Li, Z.P., Liu, Y.C.: Analysis of stability and density waves of traffic flow model in an ITS environment. Eur. Phys. J. B 53, 367–374 (2006)

    Article  MATH  Google Scholar 

  23. Jin, Y.F., Xu, M., Gao, Z.Y.: KDV and Kink-antikink solitons in an extended car-following model. J. Comput. Nonlinear Dyn. 6, 011018 (2011)

    Article  Google Scholar 

  24. Xie, D.F., Gao, Z.Y., Zhao, X.M.: Stabilization of traffic flow based on the multiple information of preceding cars. Commun. Comput. Phys. 3, 899–912 (2008)

    MathSciNet  Google Scholar 

  25. Peng, G.H., Sun, D.H.: A dynamical model of car-following with the consideration of themultiple information of preceding cars. Phys. Lett. A 374, 1694–1698 (2010)

    Article  MATH  Google Scholar 

  26. Ngoduy, D.: Linear stability of a generalized multi-anticipative car following model with time delays. Commun. Nonlinear Sci. Numer. Simul. 22, 420–426 (2015)

    Article  Google Scholar 

  27. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805–1824 (2000)

    Article  MATH  Google Scholar 

  28. Li, Y.F., Sun, D.H., Liu, W.N., Zhang, M., Zhao, M., Liao, X.Y., Tang, L.: Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference. Nonlinear Dyn. 66, 15–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lenz, H., Wagner, C.K., Sollacher, R.: Multi-anticipative car-following model. Eur. Phys. J. B 7, 331–335 (1999)

    Article  Google Scholar 

  30. Treiber, M., Kesting, A., Helbing, D.: Delays, inaccuracies and anticipation in microscopic traffic models. Phys. A 360, 71–88 (2006)

    Article  Google Scholar 

  31. Ossen, S., Hoogendoorn, S.P.: Multi-anticipation and heterogeneity in car-following: empirics and a first exploration of their implications. In: IEEE Intelligent Transportation Systems Conference, pp. 1615–1620 (2006)

  32. Hoogendoorn, S., Ossen, S., Schreuder, M.: Empirics of multi-anticipative car-following behavior. Transp. Res. Rec. 1965, 112–120 (2006)

    Article  Google Scholar 

  33. Farhi, N., Haj-Salem, H., Lebacque, J.P.: Multi-anticipative piecewise-linear car-following model. Transp. Res. Rec. 2315, 100–109 (2012)

    Article  Google Scholar 

  34. Farhi, N.: Piecewise linear car-following modeling. Transp. Res. C 25, 100–112 (2012)

    Article  Google Scholar 

  35. Hu, Y.M., Ma, T.S., Chen, J.Z.: An extended multi-anticipative delay model of traffic flow. Commun. Nonlinear Sci. Numer. Simul. 19, 3128–3135 (2014)

    Article  MathSciNet  Google Scholar 

  36. Treiber, M., Kesting, A.: Traffic flow dynamics: data, models and simulation. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  37. Addison, P.S., Low, D.J.: A novel nonlinear car-following model. Chaos 8, 791–799 (1998)

    Article  MATH  Google Scholar 

  38. Davis, L.C.: Modifications of the optimal velocity traffic model to include delay due to driver reaction time. Phys. A 319, 557–567 (2003)

    Article  MATH  Google Scholar 

  39. Orosz, G., Wilson, R.E., Krauskopf, B.: Global bifurcation investigation of an optimal velocity traffic model with driver reaction time. Phys. Rev. E 70, 026207 (2004)

    Article  MathSciNet  Google Scholar 

  40. Orosz, G., Stépán, G.: Subcritical Hopf bifurcations in a car-following model with reaction-time delay. Proc. R. Soc. A 462, 2643–2670 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sipahi, R., Niculescu, S.I.: Stability of car following with human memory effects and automatic headway compensation. Philos. Trans. R. Soc. A 368, 4563–4583 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kesting, A., Treiber, M.: How reaction time, update time, and adaptation time influence the stability of traffic flow. Comput. Aided Civil Infrastruct. Eng. 23, 125–137 (2008)

    Article  Google Scholar 

  43. Orosz, G., Moehlis, J., Bullo, F.: Robotic reactions: delay-induced patterns in autonomous vehicle systems. Phys. Rev. E 81, 025204(R) (2010)

    Article  Google Scholar 

  44. Ngoduy, D., Tampere, C.M.J.: Macroscopic effects of reaction time on traffic flow characteristics. Phys. Scr. 80, 025802–025809 (2009)

    Article  MATH  Google Scholar 

  45. Kang, Y.R., Sun, D.H.: Lattice hydrodynamic traffic flow model with explicit drivers’ physical delay. Nonlinear Dyn. 71, 531–537 (2013)

    Article  MathSciNet  Google Scholar 

  46. Ngoduy, D.: Analytical studies on the instabilities of heterogeneous intelligent traffic flow. Commun. Nonlinear Sci. Numer. Simul. 18, 2699–2706 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ngoduy, D.: Generalized macroscopic traffic model with time delay. Nonlinear Dyn. 77, 289–296 (2014)

    Article  MathSciNet  Google Scholar 

  48. Chen, J.Z., Shi, Z.K., Yu, L., Peng, Z.Y.: Nonlinear analysis of a new extended lattice model with consideration of multi-anticipation and driver reaction delays. J. Comput. Nonlinear Dyn. 9, 031005 (2014)

    Article  Google Scholar 

  49. Davoodi, N., Soheili, A.R., Hashemi, S.M.: A macro-model for traffic flow with consideration of driver’s reaction time and distance. Nonlinear Dyn. 82, 1–8 (2015)

    Article  MathSciNet  Google Scholar 

  50. Xing, J.: A parameter identification of a car following model. In: Steps Forward. Intelligent Transport Systems World Congress, pp. 1739–1745 (1995)

  51. Van Winsum, W.: The human element in car following models. Transp. Res. F 2, 207–211 (1999)

    Article  Google Scholar 

  52. Herman, R., Potts, R.B.: Single lane traffic theory and experiment. In: Proceedings of the Symposium on the Theory of Traffic Flow, pp. 120–146 (1961)

  53. Chow, T.S.: Operational analysis of a traffic dynamics problem. Oper. Res. 6, 165–184 (1958)

    Article  MathSciNet  Google Scholar 

  54. Liu, R., Li, X.: Stability analysis of a multi-phase car-following model. Phys. A 392, 2660–2671 (2013)

    Article  MathSciNet  Google Scholar 

  55. Wilson, R.E., Ward, J.A.: Car-following models: fifty years of linear stability analysis-a mathematical perspective. Transp. Plan. Technol. 34, 3–18 (2011)

    Article  Google Scholar 

  56. Treiber, M., Kanagaraj, V.: Comparing numerical integration schemes for time-continuous car-following models. Phys. A 419, 183–195 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11102165), the Natural Science Basis Research Plan in Shaanxi Province of China (Grant No. 2015JM1013), the Fundamental Research Funds for the Central Universities (Grant No. 3102015ZY050), and the UK Rail Safety and Standards Board (Grant No. T1071). The first author would like to acknowledge the China Scholarship Council for sponsoring his visit to the University of Leeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liu, R., Ngoduy, D. et al. A new multi-anticipative car-following model with consideration of the desired following distance. Nonlinear Dyn 85, 2705–2717 (2016). https://doi.org/10.1007/s11071-016-2856-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2856-4

Keywords

  • Multi-anticipative model
  • Desired following distance
  • Stability analysis
  • Traffic flow