Advertisement

Nonlinear Dynamics

, Volume 85, Issue 4, pp 2665–2671 | Cite as

A novel 4D autonomous 2\(\varvec{n}\)-butterfly wing chaotic attractor

  • Fadhil Rahma Tahir
  • Ramzy S. Ali
  • Viet-Thanh PhamEmail author
  • Arturo Buscarino
  • Mattia Frasca
  • Luigi Fortuna
Original Paper

Abstract

This paper presents a four-dimensional (4D) autonomous chaotic system. The new system is obtained by introducing the state feedback and a novel n-well potential function to the third-order Duffing system. The proposed potential function enables us to create butterfly wing chaotic attractors. The new system can generate n-scroll and 2n-butterfly wing chaotic attractors. The basic dynamical behaviors and properties of this system are investigated, such as equilibriums, stability of equilibrium points, attractors, and Lyapunov exponents. The circuit realization and experimental results are also presented.

Keywords

Chaos Butterfly wing attractor Autonomous Duffing system Circuit 

References

  1. 1.
    Buscarino, A., Fortuna, L., Frasca, M., Muscato, G.: Chaos does help motion control. Int. J. Bifurc. Chaos 17, 3577–3581 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chen, G., Yu, X.: Chaos Control: Theory and Applications. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chua, K., Zheng, W.: Chaos in Electric Drive Systems Analysis. Control and Applications. Wiley, Berlin (2011)CrossRefGoogle Scholar
  4. 4.
    Khan, M., Shah, T., Gondal, M.A.: An efficient technique for the construction of substitution box with chaotic partial differential equation. Nonlinear Dyn. 73, 1795–1801 (2013)Google Scholar
  5. 5.
    Tang, W., Zhang, J.: A novel bounded 4D chaotic system. Nonlinear Dyn. 67, 2455–2465 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fortuna, L., Frasca, M., Rizzo, A.: Chaotic pulse position modulation to improve the efficiency of sonar sensors. IEEE Trans. Instrum. Meas. 52, 1814–1890 (2003)CrossRefGoogle Scholar
  7. 7.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  8. 8.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lü, J., Chen, G., Chen, D., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12, 2917–2926 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lü, J., Chen, G.: Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurc. Chaos 16, 775–858 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ma, J., Wu, X.Y., Qin, H.X.: Realization of synchronization between hyperchaotic systems by using a scheme of intermittent linear coupling. Acta Phys. Sin. 62, 170502 (2013)Google Scholar
  13. 13.
    Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multi-scroll attractors in jerk circuits and their verification using Pspice. Nonlinear Dyn. 76, 1951–1962 (2014)CrossRefGoogle Scholar
  14. 14.
    Han, F., Hu, J., Yu, X., Wang, Y.: Fingerprint images encryption via multi-scroll chaotic attractors. Appl. Math. Comput. 185, 931–939 (2007)zbMATHGoogle Scholar
  15. 15.
    Gamez-Guzman, L., Cruz-Hernandez, C., Lopez-Gutierrez, R., Garcia-Guerrero, E.E.: Synchronization of Chua’s circuits with multi-scroll attractors: application to communication. Commun. Nonlinear Sci. Numer. Simul. 14, 2765–2775 (2009)CrossRefGoogle Scholar
  16. 16.
    Yalcin, M.E.: Increasing the entropy of a random number generator using n-scroll chaotic attractors. Int. J. Bifurc. Chaos 17, 4471–4479 (2007)CrossRefGoogle Scholar
  17. 17.
    Zidan, M.A., Radwan, A.G., Salama, K.N.: Controllable V-shape multiscroll butterfly attractors system and circuit implementation. Int. J. Bifurc. Chaos 22, 1250142 (2012)CrossRefzbMATHGoogle Scholar
  18. 18.
    Wang, L.: 3-scroll and 4-scroll chaotic attractors generated form a new 3-D quadratic autonomous system. Nonlinear Dyn. 56, 453–462 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Elwakil, A.S., Özoguz, S., Kennedy, M.P.: Creation of a complex butterfly attractor using a novel Lorenz-type system. IEEE Trans. Circuit Syst. I 49, 527–530 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Elwakil, A.S., Özoguz, S., Kennedy, M.P.: A four-wing butterfly attractor from a fully autonomous system. Int. J. Bifurc. Chaos 13, 3093–3098 (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
    Dadras, S., Momeni, H.R., Qi, G.: Analysis of a 3D smooth autonomous system with different wing chaotic attractors and transient chaos. Nonlinear Dyn. 62, 391–405 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, Z., Qi, G., Sun, Y., Wyk, B.J., Wyk, M.A.: A new type of four-wing chaotic attractors in a 3-D quadratic autonomous system. Nonlinear Dyn. 60, 443–457 (2010)CrossRefzbMATHGoogle Scholar
  23. 23.
    Yu, S., Tang, W.K.S., Lu, J., Chen, G.: Design and implementation of multi-wing butterfly chaotic attractors via Lorenz-type system. Int. J. Bifurc. Chaos 20, 29–41 (2010)CrossRefGoogle Scholar
  24. 24.
    Yu, S., Lü, J., Chen, G., Yu, X.: Generating grid multiwing chaotic attractors by constructing heteroclinic loops into switching systems. IEEE Trans. Circuits Syst. I Exp. Briefs 58, 314–318 (2011)CrossRefGoogle Scholar
  25. 25.
    Lai, Q., Guan, Z.H., Wu, Y., Liu, F., Zhang, D.X.: Generation of multi-wing chaotic attractors from a Lorenz-like system. Int. J. Bifurc. Chaos 23, 1350152 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yun, H.: A family of multi-wing chaotic attractors and its circuit implementation. Acta Phys. Sin. 63, 080505 (2014)Google Scholar
  27. 27.
    Liu, G., Yang, W., Liu, W., Dai, Y.: Designing S-boxes based on 3-D four-wing autonomous chaotic system. Nonlinear Dyn. 82, 1867–1877 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Tamasevicius, A., Bumeliene, S., Kirvaitis, R., Mykolaitis, G., Tamaseviciute, E., Lindberg, E.: Autonomous Duffing–Holmes type chaotic oscillator. Electron. Elect. Eng. J. 93, 43–46 (2009)zbMATHGoogle Scholar
  29. 29.
    Yu, S., Lü, J., Chen, G.: A family of n-scroll hyperchaotic attractors and their realization. Phys. Lett. A 364, 244–251 (2007)CrossRefGoogle Scholar
  30. 30.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sedra, A.S., Smith, K.C.: Microelectronic Circuits. Oxford University Press, Oxford (2003)Google Scholar
  32. 32.
    Buscarino, A., Fortuna, L., Frasca, M., Sciuto, G.: Design of time-delay chaotic electronic circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1888–1896 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Banerjee, T., Biswas, D., Sarkar, B.C.: Design and analysis of a first order time-delayed chaotic system. Nonlinear Dyn. 70, 721–734 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Fadhil Rahma Tahir
    • 1
  • Ramzy S. Ali
    • 1
  • Viet-Thanh Pham
    • 2
    Email author
  • Arturo Buscarino
    • 3
  • Mattia Frasca
    • 3
  • Luigi Fortuna
    • 3
  1. 1.Department of Electrical Engineering, College of EngineeringUniversity of BasrahBasrahIraq
  2. 2.School of Electronics and TelecommunicationsHanoi University of Science and TechnologyHanoiVietnam
  3. 3.Dipartimento di Ingegneria Elettrica Elettronica e InformaticaUniversità degli Studi di CataniaCataniaItaly

Personalised recommendations