Skip to main content
Log in

New results on positive pseudo-almost periodic solutions for a delayed Nicholson’s blowflies model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with a non-autonomous Nicholson’s blowflies model with an oscillating death rate. Under proper conditions, we employ a novel argument to establish a criterion on the global exponential stability of positive pseudo-almost periodic solution, which improves and extends some known relevant results. Moreover, an example along with its numerical simulations is presented to demonstrate the validity of the proposed result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nicholson, A.J.: An outline of the dynamics of animal populations. Aust. J. Zool. 2, 9–65 (1954)

    Article  Google Scholar 

  2. Gurney, W.S., Blythe, S.P., Nisbet, R.M.: Nicholsons blowflies (revisited). Nature 287, 17–21 (1980)

    Article  Google Scholar 

  3. Liu, B.: Global stability of a class of Nicholsons blowflies model with patch structure and multiple time-varying delays. Nonlinear Anal. Real World Appl. 11(4), 2557–2562 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhou, H., Wang, W., Zhang, H.: Convergence for a class of non-autonomous Nicholsons blowflies model with time-varying coefficients and delays. Nonlinear Anal. Real World Appl. 11(5), 3431–3436 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berezansky, L., Braverman, E., Idels, L.: Nicholson’s blowflies differential equations revisited: main results and open problems. Appl. Math. Model. 34, 1405–1417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, B.: Global exponential stability of positive periodic solutions for a delayed Nicholson’s blowflies model. J. Math. Anal. Appl. 412, 212–221 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alzabut, J.O.: Almost periodic solutions for an impulsive delay Nicholson’s blowflies model. J. Comput. Appl. Math. 234, 233–239 (2010)

  8. Xu, B., Yuan, R.: The existence of positive almost periodic type solutions for some neutral nonlinear integral equation. Nonlinear Anal. 60(4), 669–684 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, W., Liu, B.: Positive almost periodic solution for a class of Nicholsons blowflies model with multiple time-varying delays. J. Comput. Appl. Math. 235, 2090–2097 (2011)

  10. Liu, B.: New results on global exponential stability of almost periodic solutions for a delayed Nicholson’s blowflies model. Ann. Polon. Math. 113(2), 191–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berezansky, L., Braverman, E.: On exponential stability of a linear delay differential equation with an oscillating coefficient. Appl. Math. Lett. 22, 1833–1837 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, C.: Almost Periodic Type Functions and Ergodicity. Kluwer Academic/Science Press, Beijing (2003)

    Book  MATH  Google Scholar 

  13. Shao, J.: Pseudo almost periodic solutions for a Lasota–Wazewska model with an oscillating death rate. Appl. Math. Lett. 43, 90–95 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Diagana, T.: Pseudo almost periodic solutions to a class of semilinear differential equations. Nonlinear Dyn. 45, 45–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Insperger, T., Stepan, G.: Stability analysis of turning with periodic spindle speed modulation via semi-discretisation. J. Vib. Control. 10, 1835–1855 (2004)

    Article  MATH  Google Scholar 

  16. Smith, H.L.: Monotone Dynamical Systems. Mathematical Surveys Monographs, American Mathematical Society, Providence (1995)

    Google Scholar 

  17. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  18. Zhang, H.: New results on the positive pseudo almost periodic solutions for a generalized model of hematopoiesis. Electron. J. Qual. Theory Differ. Equ. 2014(24), 1–10 (2014)

    MathSciNet  Google Scholar 

  19. Zhang, C.: Pseudo almost periodic solutions of some differential equations II. J. Math. Anal. Appl. 192, 543–561 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hale, J.K.: Ordinary Differential Equations. Krieger, Malabar (1980)

    MATH  Google Scholar 

  21. Rakkiyappan, R., Zhu, Q., Chandrasekar, A.: Stability of stochastic neural networks of neutral type with Markovian jumping parameters: A delay-fractioning approach. J. Frank. Inst. 351(3), 1553–1570 (2014)

    Article  MathSciNet  Google Scholar 

  22. Rakkiyappan, R., Chandrasekar, A., Lakshmanan, S., Ju Park, H.: Exponential stability of Markovian jumping stochastic Cohen–Grossberg neural networks with mode-dependent probabilistic time-varying delays and impulses. Neurocomputing 131(5), 265–277 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank the associate editor and reviewers, whose valuable suggestions helped me elaborate and improve my paper. In particular, the author expresses the sincere gratitude to Prof. Bingwen Liu (Jiaxing University, Zhejiang, P.R. China) for the helpful discussion when this work is carried out. Moreover, this work was supported by the Natural Scientific Research Fund of Hunan Provincial of China (Grant Nos. 2016JJ6103, 2016JJ6104), and the Construction Program of the Key Discipline in Hunan University of Arts and Science-Applied Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanmin Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W. New results on positive pseudo-almost periodic solutions for a delayed Nicholson’s blowflies model. Nonlinear Dyn 85, 563–571 (2016). https://doi.org/10.1007/s11071-016-2706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2706-4

Keywords

Navigation