Skip to main content
Log in

Immersion and invariance adaptive velocity observer for a class of Euler–Lagrange mechanical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the problem of velocity estimation for a class of uncertain mechanical systems. Using advantages of immersion and invariance technique with input–output filtered transformation, a proper immersion and dynamical auxiliary filter have been constructed in the designed estimator. Uniform global asymptotic convergence of the velocity estimator has been proved for the system with parametric uncertainties. In the presence of perturbations on the input and output, the performance analysis of the estimator has been theoretically investigated and illustrated by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Namvar, M.: A class of globally convergent velocity observers for robotic manipulators. IEEE Trans. Autom. Control 54(8), 1956–1961 (2009)

    Article  MathSciNet  Google Scholar 

  2. Do, K., Jiang, Z.-P., Pan, J., Nijmeijer, H.: A global output-feedback controller for stabilization and tracking of underactuated ODIN: a spherical underwater vehicle. Automatica 40(1), 117–124 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Venkatraman, A., Ortega, R., Sarras, I., van der Schaft, A.: Speed observation and position feedback stabilization of partially linearizable mechanical systems. IEEE Trans. Autom. Control 55(5), 1059–1074 (2010)

    Article  MathSciNet  Google Scholar 

  4. Astolfi, A., Ortega, R., Venkatraman, A.: A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica 46(1), 182–189 (2010). doi:10.1016/j.automatica.2009.10.027

    Article  MathSciNet  MATH  Google Scholar 

  5. Romero, J., Ortega, R.: A globally exponentially stable tracking controller for mechanical systems with friction using position feedback. In: Proceedings of the 9th IFAC Symposium on Nonlinear Control Systems 2013, pp. 371–376

  6. Stamnes, Ø.N., Aamo, O.M., Kaasa, G.-O.: A constructive speed observer design for general EulerLagrange systems. Automatica 47(10), 2233–2238 (2011). doi:10.1016/j.automatica.2011.08.006

    Article  MathSciNet  MATH  Google Scholar 

  7. Davila, J., Fridman, L., Levant, A.: Second-order sliding-mode observer for mechanical systems. IEEE Trans. Autom. control 50(11), 1785–1789 (2005)

    Article  MathSciNet  Google Scholar 

  8. Su, Y., Muller, P.C., Zheng, C.: A simple nonlinear observer for a class of uncertain mechanical systems. IEEE Trans. Autom. Control 52(7), 1340–1345 (2007)

    Article  MathSciNet  Google Scholar 

  9. Su, Y.: A simple global asymptotic convergent observer for uncertain mechanical systems. Int. J. Syst. Sci. 47, 1–10 (2014)

    MathSciNet  Google Scholar 

  10. Lora, A., Melhem, K.: Position feedback global tracking control of EL systems: a state transformation approach. IEEE Trans. Autom. Control 47(5), 841–847 (2002)

    Article  MathSciNet  Google Scholar 

  11. Melhem, K., Wang, W.: Global output tracking control of flexible joint robots via factorization of the manipulator mass matrix. IEEE Trans. Robot. 25(2), 428–437 (2009)

    Article  Google Scholar 

  12. Melhem, K., Saad, M., Boukas, E.-K., Abou, S.-C.: On global output feedback tracking control of planar robot manipulators. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference (CDC-ECC’05), pp. 5594–5599 (2005)

  13. Lotfi, N., Namvar, M.: Global adaptive estimation of joint velocities in robotic manipulators. IET Control Theory Appl. 4(12), 2672–2681 (2010)

    Article  MathSciNet  Google Scholar 

  14. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, Berlin (2009)

    Book  Google Scholar 

  15. Gu, E.Y.: Configuration manifolds and their applications to robot dynamic modeling and control. IEEE Trans. Robot. Autom. 16(5), 517–527 (2000)

    Article  Google Scholar 

  16. Gu, E.Y.: Dynamic systems analysis and control based on a configuration manifold model. Nonlinear Dyn. 19(2), 113–134 (1999)

    Article  MathSciNet  Google Scholar 

  17. Melhem, K., Liu, Z., Lora, A.: A unified framework for dynamics and Lyapunov stability of holonomically constrained rigid bodies. In: Second IEEE International Conference on Computational Cybernetics, 2004 (ICCC 2004) , pp. 199–205. IEEE, (2004)

  18. Bjerkeng, M., Pettersen, K.Y.: A new Coriolis matrix factorization. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 4974–4979 (2012)

  19. Becke, M., Schlegl, T.: Extended Newton-Euler based centrifugal/Coriolis matrix factorization for geared serial robot manipulators with ideal joints. In: Mechatronika, 2012 15th International Symposium 2012, pp. 1–7

  20. Asada, H., Slotine, J.-J.: Robot Analysis and Control. Wiley, New York (1986)

  21. Astolfi, A., Karagiannis, D., Ortega, R.: Nonlinear and Adaptive Control with Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  22. Lora, A., Panteley, E.: Cascaded nonlinear time-varying systems: analysis and design. In: Lamnabhi-Lagarrigue, F., et al. (eds.) Advanced Topics in Control Systems Theory, pp. 23–64. Springer, (2005)

  23. Marino, R., Tomei, P.: Global adaptive observers for nonlinear systems via filtered transformations. IEEE Trans. Autom. Control 37(8), 1239–1245 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ortega, R., Tang, Y.: Robustness of adaptive controllersa survey. Automatica 25(5), 651–677 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tavan, M., Khaki-Sedigh, A., Arvan, M., Vali, A.: XY pedestal: partial quasi-linearization and cascade-based global output feedback tracking control. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2081-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Tavan.

Appendix

Appendix

Proof of Proposition 1: Differentiating \(\mathcal {L}(q,\dot{q} )\) in (2) yields

$$\begin{aligned} {\frac{d{\mathcal {L}}}{\mathrm{d}t} }= & {} {\ddot{q}}^T \frac{\partial {}\mathcal {L}}{\partial {}\dot{q}} + {\dot{q}}^T \frac{\partial {}\mathcal {L}}{\partial {}q} \nonumber \\= & {} {\dot{q}}^T \left( {\frac{d}{\mathrm{d}t}\frac{\partial {}\mathcal {L}}{\partial {}\dot{q}}-\frac{\partial {}\mathcal {L}}{\partial {}q}}\right) ={\frac{d{\mathcal {K}}}{\mathrm{d}t} }-{\dot{q}}^T \frac{\partial {}\mathcal {P}}{\partial {}q}. \end{aligned}$$
(51)

Replacing (1) into (51) yields

$$\begin{aligned} \dot{q} ^T \tau = {\frac{d{\mathcal {K}}}{\mathrm{d}t} }-{\dot{q}}^T \frac{\partial {}\mathcal {P}}{\partial {}q}. \end{aligned}$$
(52)

From the definition of \(\mathcal {K} \left( q,\dot{q} \right) \) in (2) and the definition of \(\upsilon \) in Proposition 1, we get

$$\begin{aligned} {\frac{d{\mathcal {K}}}{\mathrm{d}t} }= & {} \frac{d{}}{\mathrm{d}t} \left( \frac{1}{2}{\dot{q}}^T{H(q)} \dot{q} \right) \nonumber \\= & {} \frac{d{}}{\mathrm{d}t} \left( \frac{1}{2}{\upsilon ^T \upsilon } \right) = \upsilon ^T \dot{\upsilon }= \dot{q} ^T {T(q)}^T \dot{\upsilon }. \end{aligned}$$
(53)

Replacing (53) in (52) and eliminating \(\dot{q} ^T\) from two sides, we conclude the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavan, M., Khaki-Sedigh, A., Arvan, MR. et al. Immersion and invariance adaptive velocity observer for a class of Euler–Lagrange mechanical systems. Nonlinear Dyn 85, 425–437 (2016). https://doi.org/10.1007/s11071-016-2696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2696-2

Keywords

Navigation