Abstract
In this paper, the threshold dynamics of Morris–Lecar neuron model is firstly analyzed by bifurcation diagram of interspike interval as a function of external forcing current, and then the discharge series, phase portraits and nullclines of the neuron under different conditions are investigated in a numerical way. The results show that the electrical activities, such as quiescent state, spiking and bursting, can be observed when the values of external forcing current beyond certain thresholds. Finally, based on the 2-D nonlinear differential equations of Morris–Lecar neuron model, a complete electronic implementation of this model is proposed and studied in detail. At the same time, a circuitry realization of the hyperbolic cosine function \(\tau _W (V)\) in the Morris–Lecar neuron model is put forward and described carefully. The outputs of designed circuits are consistent well with the theoretical predictions, which validate the design methods. Moreover, the circuit presented in this paper can be used as an experimental unit to investigate the dynamics of a single neuron or collective behaviors of a large-scale neural network.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117(4), 500–544 (1952)
Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445 (1961)
Nagumo, J., Arimoto, S., Yoshizawa, S.: Active pulse transmission line simulating nerve axon. Proc. Inst. Radio Eng. 50(10), 2061 (1962)
Rinzel, J.: Repetitive activity and hopf bifurcation under point-stimulation for a simple Fitzhugh-Nagumo nerve-conduction model. J. Math. Biol. 5(4), 363–382 (1978)
Nagumo, J., Sato, S.: Response characteristic of a mathematical neuron model. Kybernetik 10(3), 155 (1972)
Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1 (1972)
Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221(1222), 87–102 (1984)
Shilnikov, A., Kolomiets, M.: Methods of the qualitative theory for the Hindmarsh–Rose model: a case study. A tutorial. Int. J. Bifurcat. Chaos 18(8), 2141–2168 (2008)
Storace, M., Linaro, D., De Lange, E.: The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos. 18(3), 033128 (2008)
Innocenti, G., Morelli, A., Genesio, R., Torcini, A.: Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos. Chaos. 17(4), 043128 (2007)
Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)
Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle-fiber. Biophys. J. 35(1), 193–213 (1981)
Tsumoto, K., Kitajima, H., Yoshinaga, T., Aihara, K.: Bifurcations in Morris-Lecar neuron model. Neurocomputing 69(4–6), 293–316 (2006)
Shi, M., Wang, Z.: Abundant bursting patterns of a fractional-order Morris–Lecar neuron model. Commun. Nonlinear Sci. Numer. Simul. 19(6), 1956–1969 (2014)
González-Miranda, J.M.: Pacemaker dynamics in the full Morris–Lecar model. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3229–3241 (2014)
Wang, H., Wang, L., Yu, L., Chen, Y.: Response of Morris–Lecar neurons to various stimuli. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 83(2 Pt 1), 021915 (2011)
Wang, F.Q., Liu, C.X.: Study on the critical chaotic system with fractional order and circuit experiment. Acta Phys. Sin. Ed. 55(8), 3922–3927 (2006)
Wang, F.Q., Liu, C.X., Lu, J.-J.: Emulation of multi-scroll chaotic attractors in four-dimensional systems. Acta Phys. Sin. Ed. 55(7), 3289–3294 (2006)
Duan, S., Liao, X.: An electronic implementation for Liao’s chaotic delayed neuron model with non-monotonous activation function. Phys. Lett. A 369(1–2), 37–43 (2007)
Conti, M., Turchetti, C.: Approximate identity neural networks for analog synthesis of nonlinear dynamical-systems. IEEE Trans. Circuits Syst. I-Fundam. Theory Appl. 41(12), 841–858 (1994)
Nouri, M., Karimi, G.R., Ahmadi, A., Abbott, D.: Digital multiplierless implementation of the biological Fitzhugh–Nagumo model. Neurocomputing 165, 468–476 (2015)
Cosp, J., Binczak, S., Madrenas, J., Fernandez, D.: Realistic model of compact VLSI Fitzhugh–Nagumo oscillators. Int. J. Electron. 101(2), 220–230 (2014)
Dana, S.K., Sengupta, D.C., Hu, C.K.: Spiking and bursting in Josephson junction. IEEE Trans. Circuits Syst. II-Express Br. 53(10), 1031–1034 (2006)
Jun, M., Long, H., Zhen-Bo, X., Wang, C.: Simulated test of electric activity of neurons by using Josephson junction based on synchronization scheme. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2659–2669 (2012)
Li, F., Liu, Q., Guo, H., Zhao, Y.: Simulating the electric activity of Fitzhugh–Nagumo neuron by using Josephson junction model. Nonlinear Dyn. 69(4), 2169–2179 (2012)
Ren, G., Tang, J., Ma, J., Xu, Y.: Detection of noise effect on coupled neuronal circuits. Commun. Nonlinear Sci. Numer. Simul. 29(1–3), 170–178 (2015)
Dahasert, N., Ztürk, İ., Kiliç, R.: Experimental realizations of the HR neuron model with programmable hardware and synchronization applications. Nonlinear Dyn. 70(4), 2343–2358 (2012)
Lee, Y.J., Lee, J., Kim, K.K., Kim, Y.-B.: Low power CMOS electronic central pattern generator design for a biomimetic underwater robot. Neurocomputing 71(1–3), 284–296 (2007)
Bin, L., Yibin, L., Xuewen, R.: Gait generation and transitions of quadruped robot based on Wilson-Cowan weakly neural networks. 2010 IEEE Int. Conf. Robot. Biomim. (ROBIO). 19–24 (2010)
Wu, X., Ma, J., Yuan, L., Liu, Y.: Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn. 75(1–2), 113–126 (2013)
Wagemakers, A., Sanjun, M.A.F., Casado, J.M., Aihara, K.: Building electronic bursters with the Morris–Lecar neuron model. Int. J. Bifurc. Chaos 16(12), 3617–3630 (2006)
Behdad, R., Binczak, S., Dmitrichev, A.S., Nekorkin, V.I.: Artificial electrical Morris–Lecar neuron. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 1875–1884 (2015)
Ozkurt, N., Savaci, F.A., Gunduzalp, M.: The circuit implementation of a wavelet function approximator. Analog Integr. Circuit Signal Process. 32(2), 171–175 (2002)
Riehle, A., Grun, S., Diesmann, M., Aertsen, A.: Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278(5345), 1950–1953 (1997)
Liu, C., Wang, J., Chen, Y.-Y., Deng, B.: Closed-loop control of the thalamocortical relay neuron’s Parkinsonian state based on slow variable. Int. J. Neural Syst. 23(4), 1350017 (2013)
Su, F., Wang, J., Deng, B., Wei, X.-L.: Adaptive control of Parkinson’s state based on a nonlinear computational model with unknown parameters. Int. J. Neural Syst. 25(1), 1450030 (2015)
Traub, R.D., Wong, R.K.S.: Cellular mechanism of neuronal synchronization in epilepsy. Science 216(4547), 745–747 (1982)
Tsakiridou, E., Bertollini, L., Decurtis, M., Avanzini, G.: Selective increase in t-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J. Neurosci. 15(4), 3110–3117 (1995)
Acknowledgments
The authors thank the anonymous referees for their very constructive and helpful suggestions. This work is partially supported by the National Nature Science Foundation of China under the Grant Nos. 51177117 and 51307130.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hu, X., Liu, C., Liu, L. et al. An electronic implementation for Morris–Lecar neuron model. Nonlinear Dyn 84, 2317–2332 (2016). https://doi.org/10.1007/s11071-016-2647-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-016-2647-y