Skip to main content
Log in

Role of network topology in noise reduction using coupled dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the usefulness of coupled redundancy as a mechanism for reduction in local noise in coupled map lattices and investigate the role of network topology, coupling strength, and iteration number in this mechanism. Explicit numerical simulations to measure noise reduction in coupled units connected in different topologies such as ring, star, small-world, random, and grid networks have been carried out. We study both symmetric and asymmetric networks. Linear stability analysis is presented to identify an optimal symmetric topology. The effect of rewiring is also investigated, and we find that dynamic links enhance the noise reduction capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Argyris, A., Hamacher, M., Chlouverakis, K., Bogris, A., Syvridis, D.: Photonic integrated device for chaos applications in communications. Phys. Rev. Lett. 100, 194101 (2008)

    Article  MATH  Google Scholar 

  2. Atay, F.M., Bıyıkoğlu, T., Jost, J.: Network synchronization: spectral versus statistical properties. Phys. D 224, 35–41 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boccaletti, S., Grebogi, C., Lai, Y.C., Mancini, H., Maza, D.: The control of chaos: theory and applications. Phys. Rep. 329, 103–197 (2000)

    Article  MathSciNet  Google Scholar 

  4. Bouvrie, J., Slotine, J.J.: Synchronization and redundancy: implications for robustness of neural learning and decision making. Neural Comput. 23, 2915–2941 (2010)

    Article  MATH  Google Scholar 

  5. Chang, H.C., Cao, X., Mishra, U.K., York, R.: Phase noise in coupled oscillators: theory and experiment. IEEE Trans. Microw. Theory Tech. 45, 604–615 (1997)

    Article  Google Scholar 

  6. Choudhary, A., Kohar, V., Sinha, S.: Taming explosive growth through dynamic random links. Sci. Rep. 4, 4308 (2014)

    Article  Google Scholar 

  7. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 65–68 (1993)

    Article  Google Scholar 

  8. De, S., Sinha, S.: Effect of switching links in networks of piecewise linear maps. Nonlinear Dyn. 81, 1741–1749 (2015)

    Article  MathSciNet  Google Scholar 

  9. Dhople, S.V., Johnson, B.B., Dorfler, F., Hamadeh, A.O.: Synchronization of nonlinear circuits in dynamic electrical networks with general topologies. IEEE Trans. Circuits Syst. I Reg. Pap. 61, 2677–2690 (2014)

    Article  MathSciNet  Google Scholar 

  10. Guastello, S.J.: Chaos, catastrophe, and human affairs: Applications of Nonlinear Dynamics to Work, Organizations, and Social Evolution. Psychology Press, East Sussex (2013)

    Google Scholar 

  11. Jeter, R., Belykh, I.: Synchronization in on-off stochastic networks : windows of opportunity. IEEE Trans. Circuits Syst. I Reg. Pap. 62, 1260–1269 (2015)

    Article  MathSciNet  Google Scholar 

  12. Kaneko, K.: Theory and Applications of Coupled Map Lattices, vol. 12. Wiley, Hoboken (1993)

    MATH  Google Scholar 

  13. Kaneko, K., Tsuda, I.: Complex Systems: Chaos and Beyond: Chaos and Beyond: A Constructive Approach With Applications in Life Sciences. Springer, Berlin (2001)

    MATH  Google Scholar 

  14. Kia, B., Kia, S., Lindner, J.F., Sinha, S., Ditto, W.L.: Noise tolerant spatiotemporal chaos computing. Chaos Interdiscip. J. Nonlinear Sci. 24, 043110 (2014)

    Article  MathSciNet  Google Scholar 

  15. Kia, B., Kia, S., Lindner, J.F., Sinha, S., Ditto, W.L.: Coupling reduces noise: applying dynamical coupling to reduce local white additive noise. Int. J. Bifurc. Chaos 25, 1550040 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kia, B., Lindner, J.F., Ditto, W.L.: Nonlinear dynamics based digital logic and circuits. Front Comput. Neurosci. 9, 49 (2015)

    Article  Google Scholar 

  17. Kocarev, L., Galias, Z., Lian, S.: Intelligent Computing Based on Chaos, vol. 184. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  18. Kohar, V., Ji, P., Choudhary, A., Sinha, S., Kurths, J.: Synchronization in time-varying networks. Phys. Rev. E 90, 022812 (2014)

    Article  Google Scholar 

  19. Kohar, V., Kia, B., Lindner, J.F., Ditto, W.L.: Reduction of additive colored noise using coupled dynamics. Int. J. Bifurc. Chaos 26, 1650005 (2015)

    Article  MathSciNet  Google Scholar 

  20. Kohar, V., Sinha, S.: Emergence of epidemics in rapidly varying networks. Chaos Solitons Fractals 54, 127–134 (2013)

    Article  MathSciNet  Google Scholar 

  21. Li, X., Chen, G.: Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(11), 1381–1390 (2003)

    Article  MathSciNet  Google Scholar 

  22. Lipsitz, L.A., Goldberger, A.L.: Loss of complexity and aging: potential applications of fractals and chaos theory to senescence. JAMA 267, 1806–1809 (1992)

    Article  Google Scholar 

  23. Lu, W., Atay, F.M., Jost, J.: Chaos synchronization in networks of coupled maps with time-varying topologies. Eur. Phys. J. B 63, 399–406 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)

    Article  Google Scholar 

  25. Masuda, N., Kawamura, Y., Kori, H.: Collective fluctuations in networks of noisy components. New J. Phys. 12, 093007 (2010)

    Article  Google Scholar 

  26. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109 (1998)

    Article  Google Scholar 

  27. Rangarajan, G., Ding, M.: Stability of synchronized chaos in coupled dynamical systems. Phys. Lett. A 296, 204–209 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rose, G.S.: A chaos-based arithmetic logic unit and implications for obfuscation. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 54–58 (2014)

  29. Stavroulakis, P.: Chaos Applications in Telecommunications. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  30. Stremler, M.A., Haselton, F., Aref, H.: Designing for chaos: applications of chaotic advection at the microscale. Philos. Trans. R. Soc. A 362, 1019–1036 (2004)

    Article  MathSciNet  Google Scholar 

  31. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview press, Boulder (2014)

    Google Scholar 

  32. Suarez, A., Ramirez, F., Sancho, S.: Stability and noise analysis of coupled-oscillator systems. IEEE Trans. Microw. Theory Tech. 59, 1032–1046 (2011)

    Article  Google Scholar 

  33. Tabareau, N., Slotine, J.J., Pham, Q.C.: How synchronization protects from noise. PLoS Comput. Biol. 6, e1000637 (2010)

    Article  MathSciNet  Google Scholar 

  34. Wang, X.Y., Bao, X.M.: A novel block cryptosystem based on the coupled chaotic map lattice. Nonlinear Dyn. 72, 707–715 (2013)

    Article  MathSciNet  Google Scholar 

  35. Wang, X.Y., Qin, X.: A new pseudo-random number generator based on CML and chaotic iteration. Nonlinear Dyn. 70, 1589–1592 (2012)

    Article  MathSciNet  Google Scholar 

  36. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  37. Yang, T., Meng, Z., Shi, G., Hong, Y., Johansson, K.H.: Synchronization for multi-agent systems under directed switching topologies. In: IEEE 11th World Congress on Intelligent Control and Automation (WCICA), pp. 3473–3480 (2014)

  38. Zhai, S.: Disturbance attenuation of a network of nonlinear systems. Nonlinear Dyn. 81, 437–451 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the Office of Naval Research under Grant No. N00014-12-1-0026 and STTR Grant No. N00014-14-C-0033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kohar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohar, V., Kia, S., Kia, B. et al. Role of network topology in noise reduction using coupled dynamics. Nonlinear Dyn 84, 1805–1812 (2016). https://doi.org/10.1007/s11071-016-2607-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2607-6

Keywords

Navigation