Skip to main content
Log in

Modeling and analysis of the effect of network eigenvalue on viral spread

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper aims to study the effect of network eigenvalue on the spread of computer virus. To this end, a node-based propagation model, which incorporates the impact of external computers, is proposed. A dynamical analysis of the model shows that the network eigenvalue plays a key role in controlling viral spread. Specifically, the global stability of virus-free equilibrium and the global attractivity of viral equilibrium depend on the value of the maximum eigenvalue of the propagation network. This result reveals that computer virus would tend to extinction or persist depending on network eigenvalue. Finally, some numerical examples are given to illustrate the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kephart, J.O., White, S.R.: Directed-graph epidemiological models of computer viruses. In: Proceedings of the 1991 IEEE Symposium on Research in Security and Privacy, pp. 343–359 (1991)

  2. Piqueira, J.R.C., Araujo, V.O.: A modified epidemiological model for computer viruses. Appl. Math. Comput. 213(2), 355–360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mishra, B.K., Saini, D.K.: SEIQRS model for the transmission of malicious objects in computer network. Appl. Math. Model. 34(3), 710–715 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mishra, B.K., Pandey, S.K.: Dynamic model of worms with vertical transmission in computer network. Appl. Math. Comput. 217(21), 8438–8446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yang, L.-X., Yang, X., Wen, L., Liu, J.: A novel computer virus propagation model and its dynamics. Int. J. Comput. Math. 89(17), 2307–2314 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gan, C., Yang, X., Zhu, Q., Jin, J., He, L.: The spread of computer virus under the effect of external computers. Nonlinear Dyn. 73(3), 1615–1620 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gan, C., Yang, X., Zhu, Q.: Propagation of computer virus under the influences of infected external computers and removable storage media. Nonlinear Dyn. 78(2), 1349–1356 (2014)

    Article  MathSciNet  Google Scholar 

  8. Zhu, Q., Yang, X., Yang, L.-X., Zhang, X.: A mixing propagation model of computer viruses and countermeasures. Nonlinear Dyn. 73(3), 1433–1441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ren, J., Xu, Y.: Stability and bifurcation of a computer virus propagation model with delay and incomplete antivirus ability. Math. Probl. Eng. 2014(1), 1–9 (2014)

    MathSciNet  Google Scholar 

  10. Yang, L.-X., Yang, X.: A new epidemic model of computer viruses. Commun. Nonlinear Sci. Numer. Simul. 19(6), 1935–1944 (2014)

    Article  MathSciNet  Google Scholar 

  11. Balthrop, J., Forrest, S., Newman, M.E.J., Williamson, M.W.: Technological networks and the spread of computer viruses. Science 304(5670), 527–529 (2004)

    Article  Google Scholar 

  12. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. ACM SIGCOMM Comput. Commun. Rev. 29(4), 251–262 (1999)

    Article  MATH  Google Scholar 

  14. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ebel, H., Mielsch, L.I., Bornholdt, S.: Scale-free topology of email networks. Phys. Rev. E 66(1), 1–4 (2002)

    Google Scholar 

  16. Lloyd, A.L., May, R.M.: How viruses spread among computers and people. Science 292(5520), 1316–1317 (2001)

    Article  Google Scholar 

  17. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200–3203 (2001)

    Article  Google Scholar 

  18. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63(1), 1–9 (2001)

    Google Scholar 

  19. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 1–9 (2002)

    Google Scholar 

  20. Dezsö, Z., Barabási, A.-L.: Halting viruses in scale-free networks. Phys. Rev. E 65(5), 1–4 (2002)

    Article  Google Scholar 

  21. Griffin, C., Brooks, R.: A note on the spread of worms in scale-free networks. IEEE Trans. Syst. Man Cybernet. B Cybernet. 36(1), 198–202 (2006)

    Article  Google Scholar 

  22. Zhang, C., Feng, T., Zhao, Y., Jiang, G.: A new model for capturing the spread of computer viruses on complex-networks. Discrete Dyn. Nat. Soc. 2013(1), 1–9 (2013)

    MathSciNet  Google Scholar 

  23. Yang, L.-X., Yang, X., Liu, J., Zhu, Q., Gan, C.: Epidemics of computer viruses: A complex-network approach. Appl. Math. Comput. 219(16), 8705–8717 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, L.-X., Yang, X.: The spread of computer viruses over a reduced scale-free network. Phys. A 396(1), 173–184 (2014)

    Article  MathSciNet  Google Scholar 

  25. Gan, C., Yang, X., Zhu, Q., Jin, J.: The combined impact of external computers and network topology on the spread of computer viruses. Int. J. Comput. Math. 91(12), 2491–2506 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gan, C., Yang, X., Liu, W., Zhu, Q., Jin, J., He, L.: Propagation of computer virus both across the Internet and external computers: a complex-network approach. Commun. Nonlinear Sci. Numer. Simul. 19(1), 2785–2792 (2014)

    Article  MathSciNet  Google Scholar 

  27. Mieghem, P.V., Omic, J., Kooij, R.: Virus spread in networks. IEEE/ACM Trans. Netw. 17(1), 1–14 (2009)

    Article  Google Scholar 

  28. Sahneh, F.D., Scoglio, C.: Optimal information dissemination in epidemic networks. In: Proceedings of the 2012 IEEE 51st Annual Conference on Decision and Control, pp. 1657–1662 (2012)

  29. Yang, L.-X., Draief, M., Yang, X.: The impact of the network topology on the viral prevalence: a node-based approach. PLoS One 10(7), 1–15 (2015)

    Google Scholar 

  30. Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real networks: an eigenvalue point. In: Proceedings of the 2003 IEEE 22nd International Symposium on Reliable Distributed Systems, pp. 25–34 (2003)

  31. Youssef, M., Scoglio, C.: An individual-based approach to SIR epidemics in contact networks. J. Theor. Biol. 283(1), 136–144 (2011)

    Article  MathSciNet  Google Scholar 

  32. Lin, Y., Lui, J.C.: Modelling multi-state diffusion process in complex networks: theory and applications. J. Complex Netw. 2(4), 431–459 (2014)

    Article  Google Scholar 

  33. Nowzari, C., Preciado, V.M., Pappas, G.J.: Stability analysis of generalized epidemic models over directed networks. In: Proceedings of the 2014 IEEE 53rd Annual Conference on Decision and Control, pp. 6197–6202 (2014)

  34. Pastor-Satorras, R., Castellano, C., Mieghem, P.V., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925–979 (2015)

    Article  MathSciNet  Google Scholar 

  35. Thieme, H.R.: Asymptotically autonomous differential equations in the plane. Rocky Mt. J. Math. 24(1), 351–380 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lajmanovich, A., Yorke, J.A.: A deterministic model for gonorrhea in a nonhomogenous population. Math. Biosci. 28(3–4), 221–236 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  37. Smith, H.L., Waltman, P.: The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  38. Robinson, R.C.: An Introduction to Dynamical Systems: Continuous and Discrete. Prentice Hall, Englewood Cliffs (2004)

    MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the two anonymous reviewers and the editor for their valuable comments and suggestions. This work is supported by Natural Science Foundation of China (Grant Nos. 61572006 and 61503307), Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant Nos. KJ1500415 and KJ1500904), and Doctoral Scientific Research Foundation of Chongqing University of Posts and Telecommunications (Grant No. A2015-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenquan Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, C. Modeling and analysis of the effect of network eigenvalue on viral spread. Nonlinear Dyn 84, 1727–1733 (2016). https://doi.org/10.1007/s11071-016-2600-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2600-0

Keywords

Navigation