Skip to main content
Log in

Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present paper, we construct the numerical solution for time fractional (1 + 1)- and (1 + 2)-dimensional Schrödinger equations (TFSEs) subject to initial boundary. The solution is expanded in a series of shifted Jacobi polynomials in time and space. A collocation method in two steps is developed and applied. First step depends mainly on application of shifted Jacobi Gauss-Lobatto-collocation method for spatial discretization on the approximate solution and its spatial derivatives occurring in the TFSE and substitution in the boundary conditions or treatment of the non-local conservation conditions by the Jacobi Gauss-Lobatto quadrature rule. As a result, a system of fractional differential equation for the expansion coefficients is obtained. The second step is to use a shifted Jacobi Gauss-Radau- collocation scheme, for temporal discretization, to reduce such system into a system of nonlinear Newton iterative method. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithms demonstrating superiority over other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2006)

    MATH  Google Scholar 

  2. Heinrichs, W.: Spectral methods with sparse matrices. Numer. Math. 56, 25–41 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials. Numer. Algorithms 42(2), 137–164 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Heinrichs, W.: Algebraic spectral multigrid methods. Comput. Methods Appl. Mech. Eng. 80, 281–286 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equation. Calcolo (2015). doi:10.1007/s10092-014-0132-x

  6. Tatari, M., Haghighi, M.: A generalized Laguerre–Legendre spectral collocation method for solving initial-boundary value problems. Appl. Math. Model. 38, 1351–1364 (2014)

    Article  MathSciNet  Google Scholar 

  7. Zayernouri, M., Cao, W., Zhang, Z., Karniadakis, G.E.: Spectral and discontinuous spectral element methods for fractional delay equations. SIAM J. Sci. Comput. 36, B904–B929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36, A40–A62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 247, 30–46 (2014)

    Article  MathSciNet  Google Scholar 

  10. Darani, M.A., Nasiri, M.: A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations. Comput. Methods Differ. Equ. 1(2), 96–107 (2013)

    MATH  Google Scholar 

  11. Doha, E.H., Abd-Elhameed, W.M., Youssri, Y.H.: New algorithms for solving third-and fifth-order two point boundary value problems based on nonsymmetric generalized Jacobi PetrovGalerkin method. J. Adv. Res. 6(5), 673–686 (2015)

    Article  Google Scholar 

  12. Parvizi, M., Eslahchi, M.R.: The convergence and stability analysis of the Jacobi collocation method for solving nonlinear fractional differential equations with integral boundary conditions. Math. Methods Appl. Sci. (2015). doi:10.1002/mma.3619

  13. Bhrawy, A.H., Zaky, M.A.: Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl. Math. Model. (2015). doi:10.1016/j.apm.2015.06.012

  14. Abd-Elhameed, W.M., Youssri, Y.H., Doha, E.H.: A novel operational matrix method based on shifted Legendre polynomials for solving second-order boundary value problems involving singular, singularly perturbed and Bratu-type equations. Math. Sci. 9(2), 93–102 (2015)

    Article  MathSciNet  Google Scholar 

  15. Nemati, S.: Numerical solution of Volterra-Fredholm integral equations using Legendre collocation method. J. Comput. Appl. Math. 278, 29–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80, 101–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bhrawy, A.H., Taha, T.M., Machado, J.A.T.: A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 81(2015), 1023–1052 (2015)

    Article  MathSciNet  Google Scholar 

  18. Pinto, C.M.A., Machado, J.A.T.: Complex order van der Pol oscillator. Nonlinear Dyn. 65, 247–254 (2011)

    Article  MathSciNet  Google Scholar 

  19. Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54, 263–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. D.W. Brzezinski, P. Ostalczyk: Numerical calculations accuracy comparison of the Inverse Laplace Transform algorithms for solutions of fractional order differential equations. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2225-8

  21. Povstenko, Y.: Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry. Nonlinear Dyn. 59, 593–605 (2010)

    Article  MATH  Google Scholar 

  22. Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for containant transport in catchments. Nature 403, 524–526 (2000)

    Article  Google Scholar 

  23. Giona, M., Roman, H.E.: Fractional diffusion equation for transport phenomena in random media. Phys. A 185, 87–97 (1992)

    Article  Google Scholar 

  24. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)

    Google Scholar 

  25. Piodlubny, I., Thimann, K.V.: Fractional differential equations. In: Mathematics in Science and Engineering, vol. 198, pp.1–340. Academic Press Inc., San Diego (1998)

  26. Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  27. Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algorithms(2015). doi:10.1007/s11075-015-0087-2

  28. Bhrawy, A.H., Abdalkawy, M.A.: A fully spectral collocation approximation for multi-dimensional fractional schrödinger equations. J. Comp. Phys. 294, 462–483 (2015)

  29. Parvizi, M., Eslahchi, M.R., Dehghan, M.: Numerical solution of fractional advection–diffusion equation with a nonlinear source term. Numer. Algorithms (2014). doi:10.1007/s11075-014-9863-7

  30. Hafez, R.M., Ezz-Eldien, S.S., Bhrawy, A.H., Ahmed, E.A., Baleanu, D.: A Jacobi Gauss-Lobatto and Gauss-Radau collocation algorithm for solving fractional Fokker–Planck equations. Nonlinear Dyn. doi: 10.1007/s11071-015-2250-7

  31. Eslahchi, M.R., Dehghan, M., Parvizi, M.: Application of the collocation method for solving nonlinear fractional integro-differential equations. J. Comput. Appl. Math. 257, 105–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dehghan, M., Abdi-mazraeh, S., Lakestani, M.: Numerical solution for a class of fractional convection–diffusion equation using the flatlet oblique multiwavelets. J. Vib. Control 20, 913–924 (2014)

    Article  MathSciNet  Google Scholar 

  33. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  Google Scholar 

  34. Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov–Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Eng. 283, 1545–1569 (2015)

    Article  MathSciNet  Google Scholar 

  35. Hosseini, V.R., Chen, W., Avazzadeh, Z.: Numerical solution of fractional telegraph equation by using radial basis functions. Eng. Anal. Bound. Elem. 38, 31–39 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pedas, A., Tamme, E.: Spline collocation for nonlinear fractional boundary value problems. Appl. Math. Comput. 244, 502–513 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Heydari, M.H., Hooshmandasl, M.R., Maalek Ghaini, F.M., Cattani, C.: Wavelets method for the time fractional diffusion-wave equation. Phys. Lett. A. 379, 71–76 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bhrawy, A.H.: A highly accurate collocation algorithm for 1 + 1 and 2 + 1 fractional percolation equations. J. Vib. Control (2015). doi:10.1177/1077546315597815

  39. Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Van Gorder, R.A.: Jacobi-Gauss-Lobatto collocation method for the numerical solution of \(1+1\) nonlinear Schrödinger equations. J. Comput. Phys. 261, 244–255 (2014)

    Article  MathSciNet  Google Scholar 

  40. Zhang, L.W., Liew, K.M.: An element-free based solution for nonlinear Schrödinger equations using the ICVMLS-Ritz method. Appl. Math. Comput. 249, 333–345 (2014)

    Article  MathSciNet  Google Scholar 

  41. Naber, M.: Time fractional Schröinger equation. J. Math. Phys. 45, 3339–3352 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Herzallah, M.A.E., Gepreel, K.A.: Approximate solution to the time-space fractional cubic nonlinear Schrödinger equation. Appl. Math. Model. 36, 5678–5685 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wei, L., He, Y., Zhang, X., Wang, S.: Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation. Finite Elem. Anal. Des. 59, 28–34 (2012)

    Article  MathSciNet  Google Scholar 

  44. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics. Eng. Anal. Bound. Elem. 37, 475–485 (2013)

    Article  MathSciNet  Google Scholar 

  45. Addaa, F.B., Cresson, J.: Fractional differential equations and the Schrödinger equation. Appl. Math. Comput. 161, 323–345 (2005)

    Article  MathSciNet  Google Scholar 

  46. Wang, P., Huang, C.: A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation. Numer. Algorithms (2014). doi:10.1007/s11075-014-9917-x

  47. Dong, J., Xu, M.: Space-time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344, 1005–1017 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ashyralyev, A., Hicdurmaz, B.: On the numerical solution of fractional Schrödinger differential equations with the Dirichlet condition. Inter. J. Comput. Math. 89, 1927–1936 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Van Gorder, R.A.: A new Jacobi spectral collocation method for solving 1 + 1 fractional Schrödinger equations and fractional coupled Schrodinger systems. Eur. Phys. J. Plus 129, 260 (2014)

    Article  Google Scholar 

  50. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons Inc., New York (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Biswas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A. et al. Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations. Nonlinear Dyn 84, 1553–1567 (2016). https://doi.org/10.1007/s11071-015-2588-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2588-x

Keywords

Navigation