Skip to main content
Log in

Geometric analysis of a pest management model with Holling’s type III functional response and nonlinear state feedback control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, based on a predator–prey model with Holling’s type III functional response, a pest management system with artificial interference is proposed. We assume that the artificial interference strategy will be taken to control pests when their number reaches a certain threshold. Based on this assumption, the artificial interference strategy of the system with nonlinear state feedback control is analyzed by using the geometric theory of ordinary differential equations. We first study the existence of periodic solutions of the model by successor functions and then the stability of periodic solutions. Finally, numerical simulations are given to illustrate our theoretic conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. United states department of agriculture (2015). www.ars.usda.gov

  2. Author: The pest management regulatory agency of Canada (2015). http://www.hc-sc.gc.ca/cps-spc/pest/index-eng.php

  3. Mahr, D., Ridgway, N.: Biological control of insects and mites: An introduction to beneficial natural enemies and their use in pest management. Information Systems Division, National Agricultural Library 481, (1993)

  4. Hueth, D., Regev, U.: Optimal agricultural pest management with increasing pest resistance. Am. J. Agric. Econ. 56(3), 543–552 (1974)

    Article  Google Scholar 

  5. Whalon, M.E., Mota-Sanchez, D., Hollingworth, R.M.: Global Pesticide Resistance in Arthropods. Commonwealth Agricultural Bureaux International, Cambridge (2008)

    Book  Google Scholar 

  6. Ehler, L.E.: Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manag. Sci. 62(9), 787–789 (2006)

    Article  Google Scholar 

  7. Hardin, M.R., Benrey, B., Coll, M., Lamp, W.O., Roderick, G.K., Barbosa, P.: Arthropod pest resurgence: an overview of potential mechanisms. Crop Prot. 14(1), 3–18 (1995)

    Article  Google Scholar 

  8. Smith, R.F., Reynolds, H.T.: Principles, definitions and scope of integrated pest control. Food and Agriculture Organization of the United Nations (1966)

  9. Kogan, M.: Integrated pest management: historical perspectives and contemporary developments. Annu. Rev. Entomol. 43(1), 243–270 (1998)

    Article  Google Scholar 

  10. Apple, J.L., Smith, R.F.: Integrated Pest Management. Springer, Berlin (1976)

    Book  Google Scholar 

  11. Dent, D., Elliott, N.C.: Integrated Pest Management. Springer Science & Business Media, Berlin (1995)

    Google Scholar 

  12. Hassanali, A., Herren, H., Khan, Z., Pickett, J., Woodcock, C.: Integrated pest management: the push–pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos. Trans. R. Soc. B Biol. Sci. 363(1491), 611–621 (2008)

    Article  Google Scholar 

  13. Lenteren, J.C.V., Woets, J.: Biological and integrated pest control in greenhouses. Annu. Rev. Entomol. 33(1), 239–269 (1988)

    Article  Google Scholar 

  14. Lewis, W.J., van Lenteren, J.C., Phatak, S.C., Tumlinson, J.H.: A total system approach to sustainable pest management. Proc. Natl. Acad. Sci. 94(23), 12243–12248 (1997)

    Article  Google Scholar 

  15. Thomas, M.B.: Ecological approaches and the development of truly integrated pest management. Proc. Natl. Acad. Sci. 96(11), 5944–5951 (1999)

    Article  Google Scholar 

  16. Bahar, A., Mao, X.: Stochastic delay Lotka–Volterra model. J. Math. Anal. Appl. 292(2), 364–380 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hong, K., Weng, P.: Stability and traveling waves of diffusive predator–prey model with age-structure and nonlocal effect. J. Appl. Anal. Comput. 2(2), 173–192 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Li, Y., Kuang, Y.: Periodic solutions of periodic delay Lotka–Volterra equations and systems. J. Math. Anal. Appl. 255(1), 260–280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, X., Chen, L.: Complex dynamics of Holling type II Lotka–Volterra predator–prey system with impulsive perturbations on the predator. Chaos Solitons Fractals 16(2), 311–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meng, X., Liu, R., Zhang, T.: Adaptive dynamics for a non-autonomous Lotka–Volterra model with size-selective disturbance. Nonlinear Anal.: Real World Appl. 16, 202–213 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng, Y., Zhang, T.: Turing instability and pattern induced by cross-diffusion in a predator–prey system with allee effect. Appl. Math. Comput. 275, 1–12 (2016). doi:10.1016/j.amc.2015.11.067

    Article  MathSciNet  Google Scholar 

  22. Sambathy, M., Balachandran, K.: Spatiotemporal dynamics of a predator–prey model incorporating a prey refuge. J. Appl. Anal. Comput. 3(1), 71–80 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Takeuchi, Y.: Global Dynamical Properties of Lotka–Volterra Systems. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  24. Yuan, S., Xu, C., Zhang, T.: Spatial dynamics in a predator–prey model with herd behavior. Chaos 23(3), 033102 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, T., Hong, Z.: Delay-induced Turing instability in reaction–diffusion equations. Phys. Rev. E 90(5), 052908 (2014)

    Article  MathSciNet  Google Scholar 

  26. Zhang, T., Xing, Y., Zang, H., Han, M.: Spatio-temporal dynamics of a reaction–diffusion system for a predator–prey model with hyperbolic mortality. Nonlinear Dyn. 78(1), 265–277 (2014)

    Article  MathSciNet  Google Scholar 

  27. Hui, J., Zhu, D.: Dynamic complexities for prey-dependent consumption integrated pest management models with impulsive effects. Chaos Solitons Fractals 29(1), 233–251 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiao, J., Chen, L., Cai, S.: Impulsive control strategy of a pest management SI model with nonlinear incidence rate. Appl. Math. Model. 33(1), 555–563 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Z., Chen, L., Huang, J.: Permanence and periodicity of a delayed ratio-dependent predator–prey model with Holling type functional response and stage structure. J. Comput. Appl. Math. 233(2), 173–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, B., Zhang, Y., Chen, L.: The dynamical behaviors of a Lotka–Volterra predator–prey model concerning integrated pest management. Nonlinear Anal.: Real World Appl. 6(2), 227–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Meng, X., Chen, L.: Permanence and global stability in an impulsive Lotka–Volterra N-species competitive system with both discrete delays and continuous delays. Int. J. Biomath. 01(02), 179–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Meng, X., Jiao, J., Chen, L.: The dynamics of an age structured predator–prey model with disturbing pulse and time delays. Nonlinear Anal.: Real World Appl. 9(2), 547–561 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shi, R., Jiang, X., Chen, L.: A predator–prey model with disease in the prey and two impulses for integrated pest management. Appl. Math. Model. 33(5), 2248–2256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Song, X., Hao, M., Meng, X.: A stage-structured predator–prey model with disturbing pulse and time delays. Appl. Math. Model. 33(1), 211–223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, S., Chen, L.: Mathematical modelling to control a pest population by infected pests. Appl. Math. Model. 33(6), 2864–2873 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, H., Chen, L., Nieto, J.J.: A delayed epidemic model with stage-structure and pulses for pest management strategy. Nonlinear Anal.: Real World Appl. 9(4), 1714–1726 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, T., Meng, X., Song, Y.: The dynamics of a high-dimensional delayed pest management model with impulsive pesticide input and harvesting prey at different fixed moments. Nonlinear Dyn. 64(1–2), 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Braverman, E., Liz, E.: Global stabilization of periodic orbits using a proportional feedback control with pulses. Nonlinear Dyn. 67(4), 2467–2475 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kristiansen, R., Nicklasson, P.J.: Spacecraft formation flying: a review and new results on state feedback control. Acta Astronaut. 65(11–12), 1537–1552 (2009)

    Article  Google Scholar 

  40. Li, N., Cao, J.: New synchronization criteria for memristor-based networks: adaptive control and feedback control schemes. Neural Netw. 61, 1–9 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Naifar, O., Ben Makhlouf, A., Hammami, M., Ouali, A.: State feedback control law for a class of nonlinear time-varying system under unknown time-varying delay. Nonlinear Dyn. 82(1–2), 349–355 (2015)

    Article  MathSciNet  Google Scholar 

  42. Song, S., Zhu, Q.: Noise suppresses explosive solutions of differential systems: a new general polynomial growth condition. J. Math. Anal. Appl. 431(1), 648–661 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tang, S., Pang, W., Cheke, R., Wu, J.: Global dynamics of a state-dependent feedback control system. Adv. Differ. Equ. 2015(1), 322 (2015)

    Article  MathSciNet  Google Scholar 

  44. Tang, S., Tang, B., Wang, A., Xiao, Y.: Holling ii predator–prey impulsive semi-dynamic model with complex poincaré map. Nonlinear Dyn. 81(3), 1575–1596 (2015)

    Article  MathSciNet  Google Scholar 

  45. Wang, H., Zhu, Q.: Finite-time stabilization of high-order stochastic nonlinear systems in strict-feedback form. Automatica 54, 284–291 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yagasaki, K.: A simple feedback control system: bifurcations of periodic orbits and chaos. Nonlinear Dyn. 9(4), 391–417 (1996)

    Article  Google Scholar 

  47. Zhang, T., Ma, W., Meng, X., Zhang, T.: Periodic solution of a prey–predator model with nonlinear state feedback control. Appl. Math. Comput. 266, 95–107 (2015)

    Article  MathSciNet  Google Scholar 

  48. Zhang, T., Meng, X., Liu, R., Zhang, T.: Periodic solution of a pest management Gompertz model with impulsive state feedback control. Nonlinear Dyn. 78(2), 921–938 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhao, Y., Xu, J.: Using the delayed feedback control and saturation control to suppress the vibration of the dynamical system. Nonlinear Dyn. 67(1), 735–753 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhu, Q.: Asymptotic stability in the pth moment for stochastic differential equations with Lévy noise. J. Math. Anal. Appl. 416(1), 126–142 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhu, Q., Cao, J., Rakkiyappan, R.: Exponential input-to-state stability of stochastic Cohen–Grossberg neural networks with mixed delays. Nonlinear Dyn. 79(2), 1085–1098 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tang, S., Cheke, R.A.: State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol. 50(3), 257–292 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tang, S., Xiao, Y., Chen, L., Cheke, R.: Integrated pest management models and their dynamical behaviour. Bull. Math. Biol. 67(1), 115–135 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, Y., Zhang, Q., Zhang, X.: Dynamical behavior of a class of prey–predator system with impulsive state feedback control and Beddington-DeAngelis functional response. Nonlinear Dyn. 70(2), 1511–1522 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Pang, G., Chen, L.: Periodic solution of the system with impulsive state feedback control. Nonlinear Dyn. 78(1), 743–753 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Gang, W., Sanyi, T.: Qualitative analysis of prey–predator model with nonlinear impulsive effects. Appl. Math. Mech. 34(5), 496–505 (2013)

    Article  Google Scholar 

  57. Chen, J., Zhang, H.: The qualitative analysis of two species predator–prey model with Holling’s type iii functional response. Appl. Math. Mech. 7(1), 77–86 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  58. Chen, L.: Pest control and geometric theory of semi-continuous dynamical system. J. Beihua Univ. 12(1), 1–9 (2011)

  59. Bainov, D., Simeonov, P.: Impulsive Differential Equations: Periodic Solutions and Applications. CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  60. Lakshmikantham, V., Bainov, D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Book  MATH  Google Scholar 

  61. Arnold, V.: Geometrical Methods in the Theory of Ordinary Differential Equations (Grundlehren der mathematischen Wissenschaften). Springer, New York (1988)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongqian Zhang.

Additional information

This work is supported by the National Natural Science Foundation of China (No. 11371230), Shandong Provincial Natural Science Foundation, China (No. ZR2012AM012, No. ZR2015AQ001), a Project for Higher Educational Science and Technology Program of Shandong Province of China (No. J13LI05), Joint Innovative Center for Safe and Effective Mining Technology and Equipment of Coal Resources, Shandong Province of China and SDUST Research Fund (2014TDJH102).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhang, J., Meng, X. et al. Geometric analysis of a pest management model with Holling’s type III functional response and nonlinear state feedback control. Nonlinear Dyn 84, 1529–1539 (2016). https://doi.org/10.1007/s11071-015-2586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2586-z

Keywords

Navigation